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Abstract

@

Because of lhelr_capabilitles for adapt alien: nonlir ear functioR approximation, _nd [_.ar-

allel, haxdware implementatioR,_nemrM networks have proven to be welI-suiC.ed for some

important control applications.

IIowever, several impor.tant issues are preseVt it_ man:' real-world neural-network conlrol

applicafiol_S that have act yet been addressed effectively in the literature. Four of these

important generic issues are _deatified and addressed in .come depth in thi_J.hesis as part of

the development of an adaptive ucural-rmtworl_.b.'tscd control sv.,;temn..fgk._erirrtt, ntal

free-flying space robot prototype.

The fir:_t issue concerns the importance of true system-level Aesign of the control system.

.4 now hybrid strat,.,gy is develr, ped here., in depth, for the beneficial imegratio|| of ne_aral

netw'orks into the tote.l control system. The basic philosophy is to bt)rrow, heavily f:'om

c(mventional control theory, and use the neural network as a key subsystem just where its

avnliaear, adaptive: and parallel processing henefi*.s outweigh the a_oc.;,ated costs.

A second important issue in neural network covtrol concerns incorp¢_rating a priori

knowledge into the neurat netwe_rk. In many applicatkms, it is po'._sil.,le to get a reasonab}y

accurate controller 'asing con ventio_._al means. If this prior information i,., u.,_ed purposefully

to provide a starting point for the optimizing capabilities of the neural xtetwork, it can

provide much fa,_ter ini.tial learning. In a step towards addressitlg th_s issue, a new I_etteric

"Fuliy.Cor.ne,::ted Architcctllre" (I:'CA)is developed fez u.,e with backpropag,tion. This

FCA hits fuac(iof_ality lw5o||d th;tI of a h_yeted network, and these .capabilities are.showlt

It) b(: p;_>rtic.u|ally betxeficial for ,:ontrol Lasks. For example,.Ihe.',: .providt, tit,., new ai)illt, d to

pte-pro_ram (he neural.nt:tw,:_rk dh'ectl3: wi!h a linear apprt)xhnate controller..

A third i,_sue is that-neural networks are common]y trained u_ing _ gr'adieat.b_ed

uIJtimization met hod s'acli as backp_ropagatioa-, but many rcai.wtn'Id :_y._.ems h a_:e discrete.

valued..C:unctions. (DElLs)(:hat do .not permit gradient-ba._ed optimization, One exampl_ i:;

............ the t;,tt-Off ! hrust¢_ts that a_c comfnon on spacecraft. A flew techldque i_ dew,loped here that.

uow extends backprol_agatio)i lc.arldli_.; for use with I)VI"._. M,)reover, (he moditicn=ion to

backpropa,g_lion is small, requiring (1) r|,placement of tile D\:I"s wilh vontinuously differ

eatio.ble approxima(ior s. ,and (2) injection of noise on the forward sweep. This algorith*_t

is appli,:abl_. ,,generically whenever a gradiet_t.based optimiza(ion is 'a_ed f_l :,ystems with

d:_screte.value:l f'.tlictio:ll_ It i_ app]i_,d h,_re to the, cof_tlo[ ptob]otit tJsilig (Jll-cafl ' thrusters,



.....................

as well a_ foJ."tra]nblg neural networks built with hard-lkniting neurons (stgnums il,_tead of

._i&zr_oidS).

• be fourth iss_e is that the speed of adaptatit_n is often a limiting factor in the i_l_ple-

meatatio_._ of a neural-network coatrr_l system. This issue has been strongly res_Jlved i_ this

research by drawil_$ t_n .the above new contribution._: the FCA and an autom,xtic growing

of 1he network combine to allow .rapid adaptation in an experimental demonstration on a_

2-D laboralory model of _ freo-flyin$ space robot, Tlm neural.-ne|_work controller adap_ts

in _eal time to account for nlttltiple destabilizing z.hruster failures. Sta.biSty is xestored

within 5 seamds, and nea, r-optim,_l performance is a_:hieved within 2 mimlte._, '1"his perfor-

mance is ob_aix_ed despite t,he implrmentation on a serial microprocessor; implementation

on p_ rall,-'l-prqces_in.g hardware wou._d provide dramatically faster performance.
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Chapter 1

Introduction

9

This dissertation presents generic theoretical and experimenta| inv,,sHgat.ions into the use of

neural net,_'orks for control..AS a significant "challenge problem," a ftee.flybl_; space robe:

p_ototype equipped with on-off ga_; thrusters was controlh.d _.vel], despite raajo.t th_uswr

failures, by using a new, hybrid neural-network.b_..sed rcconfigurable control :,ystem. This

rese_.rch was conducted at the Stazffotd Univer:_ity A,._ro_,pace Robotk_ Laboratory (ARL)

a_: St anford l,'niv_rsity from 2990 to 1!)9.t.

1.1 Motivation

Due to their capabilities for adaptation, nonlinea, t function approximatitm, and paralh,!

hardwa::e implen'tea:ation, neural networks l:.ave prov,n_ _;o bO well suited for cent re] al._pli-

catlu, they have been used successfully by eng;ine,._ts in the chemical-proce,_ing indus.

tt_¢ .7[¢;2], steel _ndustty 116] [tT] (.l? I 1_|i, and setaic_nduczor, prnce:Mfig iMu._tty [171,

,:..,,._ql_._a ,,u,uher ,,f r,,_e_,r,'l,_t,l,liea,i,,n_[_01['_'l',[:_Sl.;n_l1,;71.In some ¢._o:_the,it

learning, ahilitiO._ and inhesont notdi_war nat'_lrc al[ow them ttJ s.b,e control problems and-

provMe pefform,_,flce utlmatc.hed by conventional met ltods. In other case_ their d!.s_ributed

nature, at_d re_uhin_; ¢oml,utational pawer allow them to implement k,_t,wn _ulution=_ mot0

quickly and robustly t hai_ conventicmal st._'ial ps ncessr_rs.

Neural netwurk._ derive tip.it advanl are in solvillg very compl0x problen_ from the erupt.

gent ptop0,ties that come with the mae_iv,: i£_tercon_ettion of sin_ple processing units. With

good training _ochniqur.s, _he networks at.r:capahle of implemenling verb' ,'omph,x ht,havi,)rs.

l't_t c_xttuiplo, neural n_twork:: u.a._ be u-._,d :u impleitsent arhiltaly sttal)piu_ c)f ifil',Ut:: f(,
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outputs, such as fi'ot_, sensor signals to actualor commands in a control problem. Further,_

since the mapping ca.n be-taught indirectly,.neur_l networks are e._pecia.lly attractive for

poorlyunderstood,syst.ems- ,,Iteycan g_neralizefrom traininginputsand then respond by

!nterpolatior, in untaught situa, tions.

Due to the distributed nature of the proc_ssiug and.thelr adaptive capability, x.etworks

are ofte_ robust to in tert_al component failur(,.s. Even without re, training:.the distributed

processintg gives the network the ability to withstand failure cf several neurons without

.rig_dfirant impact on the funct..ionality, hi addition to this, if on-lJn_ re. tra.ining is used, th0.

:entairting processors can adapl to ao:ount for the failur¢. ].tobusl, ru2_si:_also contributed by.

:he network's ability to adapt to dtal_g_.s in the environment, plant, perfor,Jaarce crit,eria,

etc.

These features of ueura], networks mak,. _ them p,_rticul._rly attractivo for control appli-

cati.oa._. Several ,f these featutes will prove useful in the control application p_:esented

her_..

The centralque._tionisw]telt- and how - willthe ir,:orporafionof neural _ctwotk

cumpon_'ntsprovidez.:l,._ar,cost-,._ffective_tdvantagcinreal-t_m_,control?

Olle centrM goal ofthisre.,_earch,then,isto study the use of neuralnetwolks for con-

r,rol,and to detevmin,._ the chgffacteri._tk'scf controlapplicationsthat,'anbenefitfrom the

applic_tionof tieuraInetworks, h_ eerlah,ca.se._,th_ n_ergin9ofneur_dnetwork technology

.,vi_h cent rof _y_terns v_,gineerlt_g can lead to the developmm_t of highly capable control sys.

rerh_. Mizch neural-n,'rwork theory nod co_ttol theory Mready exists such t!_at sigldficant

advan('_s in .:oHtrol capa.bilJty co|_ht ho produced simply through their astute iv.tcgratioa.

1.2 Re,-'.earch Issues

Nr_tra[ .networks have ptovelt thrmsrlve:, v_dut.ble ill a llut_lht, r of ctmtro1 applic.-ation._. S,..e

Ibr rxarq:le ',20] [2.t] "_4] [/}4!. "l'lkc:e ;Irr, however, four imp,>rtm,t iss¢les, that .arc oftrn jnt_.,.t_

y, otlttant_ ill tL r_al.world t:t|ll! re[ al)pii_:;ttlolt, tbtd have r_t yrt b0_*l addre.,_sed of_brllvoly lit

tl_o nr.tra|-v_twork litei'atvtrr:

J.. For a givett cot_trol n0ed. :houhl n no,tral n|_twork be u:ed"

• D,es rising a tlOtlral n_work provide a clearadva_tage over not ¢loht_ ,.o?

• If it .do,,s, tl,,._, to o.chieve d,.at advantnge ,_ptimalJy. ju,;! who.to in the cone.re[

s)utelll-dlotdd the tteural notv:'ork be tls#¢'_: alldWllOl'Os]tOtll..'l iv Ilttl'._

O

II

• - •Imnmlmmmlmmlm_lmml .................................................
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A prio_¢ knowledge is of,;en avaihtbh: in the form of.model._ of the sy._tem's k_y compO-

nent.';, and a_preliminary control.design (e.g. provided, by"conventiottal" control design

techniques). Is it possibl0 tO use this a priQri information to.improve greatl_: the p.er-

formance (i.e..better JnRia] performance, final convergeltce to _. better solu_im| that

the neural network can then enable?

0 Many control _pplk.atiozts involve the use of discr_,te-valued devices. For .example,

thru.,,ters ofter| operate "on.off" rather _.hari with analog-valued nutputs. This pJ_esents

a problem for ba|:kpropagatioa learning, since these discrete-valued flmctions are not

continuous._y differentiable. Is it po_:sib!e to modtfy backl, ropa_atk,n to acce.mmodate

the discret,,-v_lued t'unctioiLs? ..

° Speed of l_ar.uiag i,.3v_.ry oftea impo.rtaat in real.time control applications. It i,_

gonerally accepted that neural neiworks ¢a_. rul_ quickly durin8 implement _tion (i.e,

oace the w_.ights have beeJ_ _electe(l) due to the availability of parallel hardware; but

d'e speed of learning (i.e. finding th_ weight wll'de._,} is a sep.arat_, vet:, critica} ismte.

Can ba,:kpropagation-bas_:d l.earttil_g be made fast eltough to be feasible for re.phi

ondhlo adaptation?

A "challeuge.problem" was formulated to focus the stud), of these important lss'aes:

a re(onfigr,:rahle nettral.ltctwork.b_sed adaptivo, control :_yv:÷m was developed attd expert

client,ally, demonstrated ot_ a free-flying space robot, prott|type, in addret;sing this dtalleag_*

problem, th_ issues were .,:tudi_d, n_ural-network dev_,.lopt._tent!; were made, attd a _vorkittg

rceonfigurabl_., control _;3's_,em was d0v,:loped [69] [70] [71] ['t'22[':.a!.

"l'he exi_erimeata] apparatus.is ,howr,, in Figure '!.1. 5p(,cific;,lly, the _ir, bearlng-sup.

port,._d robot's position and attitude arc controlled.with e_ight on.off ga_ thrust.ers. The

task was this: after th,._ r;mdom, s_.,v_.;e m_.chatdcal fa]lt_ro of a_ tttttlthor of these thrusters,

iden! if)" tit,: ltew._ htu_tef-system ehara(:texistics, and reconfigure th,._ ccmtrol .,_ysien: to t:el,;a.itt

stability amt ueavoptimal p0rfortnance. Thi._ cllallonI_0 problern i_ ild4,t'esth'xg tier.only f(}r

its practic_tl applicability to _,pace oporatlotts ln!r v*, but al:_o-: acid even trier-, pervasively

- as an applicath)n that l,tise_$ ii:ld focJ_e.: eli ,evetal ',mporiant f_ll|d,ltli,anta.l gellOi'j¢ i_._llt',q

iti. lt6,ur;.d.n_,twork co_itrol.

"]'11¢chall0ng,, problem addres._e,_ the fir,_t Js.',tm. _ince it ]s a fairly conHdex, yet r,._alhtk '

ctmt::ol i_roblc_fn, Al,,o, tilt, vx, elh, ht exl)el'!lt,e|lU2.1 perfoi'n: an,:o rd' a pr(,-cxJ_ting com'0r_tional

c,lRroi appro,_rh is ,_vailnble for rornp_ eis,nt; this i_ valuable for @valuating Ih_ |,_r3_l mat_c-
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t rade-offs between neural and ,:onvep.tional app.roaehes. The _'tpp_lication also.helps to moti-

vate tile serond iss_te, a desire to make use of a priori knowledge: a.n approximate soluth_a

¢a_ b,: calculated quic.kl_: before neural-network training begins. 'the desire_to u,_e this a

priori infi._rmat_.oa to accelerate learning js especially pt.'esent here due.to l he need ibr.rapj.d

reconfgurati.on. The.existence of on-off thrusters requires the. development of a learning

method.to deal with di,,:.crote-vahmd func(:ions, highlighting the Ihird-issue.. Finally, the

speed-of-learning issue is relevaat _ .qttee stability must bc regained.quickly .due to the limits

enforced by the experim._tal implementation (i._:. the granite table is of limited size).

O

-t

1.3 Contributions

[a addressing the research issues outlined above, the research _eported in this thesis makes

the following cantr ibu tioas to the fields of neural net works, auto_latic cent rol, aad robotics:

2,

Aa adaptive neural-aetwotk.based tb.::us':er control system for a free-fiyi:ng :sp.ace robot

is dewdoped. This highly nonlln_ar complex coatrol problem was solved ht a very

aew way: by using a combination of conven!iona.1 at_d neural :aetwork approaches,

resulting in a "hybrid" control system. The balance between neural and convelttional

appro,_ehcs will, in general, vary* from one applicatio_t tu attother. At issue i,; how to

detezrr ine the correct balance on an applicatioa-by-appllcation basi,_.. To _._.ddres_ tt.,is

issue, _;yslematic evaluatioa cilter]a i,ave been prop,_so,t a,d demonstrated to aid in

the system-l,,veld_'figtt.

A new "Fa'.Jy-Conn6cred Architecture" is developed for neural z_ztworl_ control. 'll,ig

arcllitecture is a geaetalizatiott of th,: slatt,'lard I_tyered neura.l.nelworl: architecturO.

The. valu(' of the e.xtra cotmOctions [! off,:r.,, is studied. Of parti(adar impor-taace for_

conttol,.this new a::ch:,tectute allows Ibr dir,-vt pro.programming of pdor-kt,uwn lineal

ml,_iotts. This b0_c.fit is. u:.(M ii, tim robotic application to r_,,l,_c_, .dranlatically.lhi_

ti,,,? r,:quired f**r ;ul;q)ta, tion: a lit_e.ar appro_'imate conUolh,r is quickly calculated

and impletn0.nted h,,f,.,rctralalng begins The _ajor hurdI_, fop successful us,. or" tbi_

architecture, excos:._ve cutnplex2t.v, is addrossed by th,_ ill|pl_._ntt'ltt_ttion c,f a s.v..;tcmatiz_

cumplc.xity-c,qtlt rol nmtltod ':bat maliages tile c.×tt a i'ontteCtions.

['here are a n|lmbor of po.,slbl,_ ;tdvantagt,$ to tisit'g I)i'k_r it,fofnlation. Sit)re the

n,:t,.vurk begins ttnining _tih a le,.,.ottably good solutim,, i,iti.fl porfbrtaanc_' is t_,_¢,,l:
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4,

and a be_ter solution raay result due ta the better start, lag point for, the nonlinear

optimization. It also serves as a bridge-'_o conventional control techniques. Optimizing

the network from a starting point that is a direct emulation of a conventional con.troller

may fadlitate valuable utlderstandh,g of what the network i.s doing.

A _tewalgorlthmwas deadsedthatnow permitsgrad]en_-basedoptimizationofsystems

with discrete-valuedfunctions(DVFs). Gradient.basedoptimizationofsystems with

DVFs isdifficultber.au*etl_egradientof the DVF iszeroeverywhere,except at.the

tr._1_sitions,where itisundefined. The new algorithm works by forming z__moc_th,

continuousap].)ro.ximatlonto the DVF, and then adding z_oisedurh_g}raiR]llg.Ithas

been appliedtoa.number ofdifferentapplications;and each.tlme_the value of noise

injec1_cr,is d',_,rlydemonstrated. Although orlgh,allydevdoped for applicationto

the c.n-off_hrustercontrotprobl.em,thisalgorithm for gradient-basedoptimization

forl)VFs ],,,broadly appllcab.le.Three applicationsare:

• Traininga tteuralxletwovkcontrolsystem equipp,_dwith on-offactuators.

• Training_neuralnetworks builtwith hard-[imilingneuruns.

• Design Ol,tJmizati(,n with d_screte.va],Je_.de.sign options ('propo_:,,d. not yet ]m.

plemente,:l ).

An experirr.:entaldemoi_.strationwas performc_d,where the neural-rLetwork-basedco_-

troltystem reco_figure,:ii':selfrapidlyin respo_1_eto rn,fltiple:major, destal:,iliz.it,_

thrusterfailures._Stabilityisrestot'_dwithin5 seconds,atxdnear-optimalpezfotmance

is acl_ie_d wit;hil_ 2 minutes. This performance i._-nbtained de_pite the iml)lem_nta-

tifmtm _ serial micfoprocessor;.implcqtxent;_tion on FarMh,l-procossing hardware would.

provide ,Ir_t.tnatlcally fn_der l_offormaltre.

'l'h( _expvt'|lnettia] deli_Ol|ser_ttimt ptl;[[s tt_dctl,_r each of the above rnlttl'ibttt Jolts: #I

led to tl,_ elficieltt-syst_,m.10v,:l (hybrid) design that combin,._$ optimally tit,'2 h,,tt(,Iits

of. both cottvdntir,na_ cnntrnl and n-ur,d networks; #:._ r,:su}.ted in rapid recovery of

_tabi!Jty, tl,rougli the direct infiisin.-_ of a linear approxhftale conttoll0t; #3 allowed

die uso ,.'_ftl;radi0ttt-bar(,d optimi:,a/iof_ wic.h t.his control problem. The a.bil_ty to us_.

gradient informal]or, at a!l dralnaticaUy improved the rat,, of adaptation (1.,Cyond

what non.gradiot_t.hasod tuothods cn_thlI_rOvi,l(,} ".{'hesead_an,'es, rninhino.dwith a,
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automatic netsvork-gzowing method, inerea-_e-the sliced o1" the learning process to a

point where it beeom_,s a viable alternative for on-l_ae adaptive control.

Each.contrihtttior,. is addressed i:idivtdually _tnd presented in Chapters 3 through 6 of

thi:_ tltesi._.
4

1.4 Background on. Neural Networks

A brief background on neural networks is pte.,_en_.ed here to fanfiliarite the reader with the

biologlcal motivation, hlstory, and mathematical fouudal.io_ of artificial neural networks.

.More ,:ompl,.,.te overviews may be found in [22] [_'91 [67].

1.4.1 Biological Motivation

Artificial Neurld h'etworks are named after and motivated by the,. biol¢,gical neur',d net-

works that allow p!teaomen_l computirtg pert'otto aztec in hum0.ns and other living organ-

isms. Desphe the relatively sieur computation rate of the individual human neuron, the

hurna_t in'_ti,_.'s ,_ound and image rt:cog_dtlon capabilities far exceed tho_e of current contput-

ers, The hal urally fault tolerant _md adapl.h'e na tuie of the parallel dlstr2buted proccs.sing

model (both bit.flot_i_:al _,nd art.ifi¢ial) make it wt_ll suited for ambiguous tasl_s or unccrtaill

onvironment_.

The f,31/owing lists high tigl:t the difl'ownt ch:_racteristics and r;_pabilJtie,* 9f ¢gnlp)_te.!'_. .......

and the human brain.

• Cortv6idiotml Digital Computo:'s:

-. Sequential ifl_tr,tcrloH_

-- l)iglt al

•- Add"es,_ memory

- Speed ra_,nst, rt,d tit nar.oseronds

- Hi&hly accur;,.to

-. Nol.m,_ o._.-arily fault t¢_loratd

@

O
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e Ihtmart Brain:

- Massively parallel _rchitecture ....

- Analog

- Asse¢iative Memory

- Neur0xlresponsetimeson o_:dc,of 1 mflliseco1|d

- Less _ccuratz_...than computdrs

- Fault lolerant, nat,arally adaptive

@

Currently, conventional dil3ital co_nputers work by Jmplcme_ting _ 6cries of instructions,

axed provide highly accurate arilhmetic and logic compul._tions in cycle times on the order

of nanoseconds.

Bioh_gkal neural networks are difficult to study., and P.ot Completely understood, What

is known is that computations are carrlcd out ht _paralld, with thou,|ands to hllliozt_ (e.g. the

hu.m_:n brain has roughly 10 m processing units (neuron,;) and.10 l'a connections (synapses}) of

low-precision proces,,,ors opera.tlng _ ith rise times on the order of fnilli,;oeonds. The neurons

communicate by :_ending 100 rnV impulse.,_ ttJ other neurons, Since Ibc magnitude of the._e

pl_hes is fi>'ed, i_ffotmalioa is encoded in the frt_quen¢y of firing. By comparison, modern

m]croproce:,socs have typically 106 to 10 r transistors, but only o_te #;o fou:._ computation._

are executed at a lime. 'l'hia lack o1"p.arallelism ls offset.by _lte fast in'nc'essing time on _:he

order of 1-20 nanosecond.* {50 Mlh to 1 Gltz clock rate).

Despite lhe slow pr,ocessblg of e_tch individual neuron, th_ m_,ssivc par.allelisnuresults

in eel:rain computing Capabilities; that are impc.Jssible, with conventional sequellti._l digital

pjocess0rs. Sotnc ofthese capabilitief,-that are most:neai'ly reachable with conveatioxtal

processors aro: vision prot.-e._sing, suu_d pmcessin 8, pa.tt,._i'n recogffitiun, adaptiv_ control,

and platming, 'l'he k0.y idea is that desil_ni_g a co_|lpufel with some attributps of the

biol_l[ical neural network, suct_ as parallel computation and adaptive capabilit:¢, may yield

greater success ht these area._ thai| lryh|g to push incrementaUy the sta_e of the art in

convefdion_d Compuling h_.rdware al_d alg,_rilhn_s.

The pot.p/llJal benefits of a imrallol.distribut::d.l)rocet_mg approach create an incentive

to ca.,_ta problem intoa for:a_ that ¢at_ tr;e t}to cOihlmfafiotl_l t ap.abi3J*i_,._ot' tld_ arrhltectute.

nmm " "mlm_l
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1.4.2 History of Neural Networks

Vi'hel_ peoph_.began attempting sllstained hea._ier-thaii2ai__ flight., the. first .thought, was to

build an. aircraft modelled, after birds..Early ornithopWrs attempted to rep.roduce the

flappir.,g.wing motions that allow bi_.ds to fly. These designs failed. The first successful

solution, by the Wright brolher_ in 1903, used.instead a fixed wlng to p.rod_ce llft, with

wing-war;.)in:g method to control tlm lift of each wing (siml]ar to birds), but with an internal-

¢ombustion._:ngine-p6wered propeller for thr, st. Most ah'craft today resemble birds only

slightly, in that they haw: a whig on each side ofthe fuselage, _md the ctmtrol system sits up

front witl_ the vision sensors. ]Iowever, the propulsion syswm, corttrol system, materials,

etc. are very different. Using nature as a motivation wa.s useful; but it ha:_ b,mIL important

to incorporate the be:_t ezlglneerlng a_ilable, and not rigidly follow the biological model.

Similarly, one cJfthe earliest ideas for building a c,_mput er was that it shcmld be modeled

afterthe humat, brain.Otto._biologlSls began toundcrsland the ba$icsabout how the bra_n

works on a microscopiclevel,earlyneural-networkresear<'hersmodelled thesencurolts,and

des_gn,__d arti, ficiat neural networks.

IIowever, bofor_ they understood how the brah_ worked, artificial computblg ._ystems

had bee|l built in the forrn of mechanical addhLg lane:hines. These produced precise compu-

tations, one iastructio_ at a time, As those me¢'hanlc_d linkage,_ were replaced with electrlcal

circuits, vacu.um tube,;, transistors, and fi/lally an integrated circuit consisting of ma,'Lv traJ_-

sisters, the computational perfi)rmance has increased dramatically, but th,._ h!.ghly aacc_tra_:e

and serial attributes baw_ p¢,rsi:_ted. This d|_'ve!opme|lt of conventional ,_0rial l)rcces:_ot'; h;_s

contimied in parallel with the dev,÷lopment of neu.rally-inspired processors.

A _e_aence-of inajo/ deuelopments ii_ neurally.in_pired comp,_tiag follow._..

In 1943, McCutlough and Pitts modell_:d the _euron as a sinlpl_: thre,_hold dev._cc, and

analyzed the-computational ci_pabiliti_.s of t_etwol'ks of these functions.

in L9-18,H_bb proposed a way forneurons to ch,_q._etheeff_-ct_:heyhad _ other_euroas,

fof.mi_g the founde, tion f_)r a mod_l of lear_i_g.

In 19._7, Koln|ogorov's Theorem laid the mathematical foundatb)n for new,rat network,_.

Thi.,.theorem proved that networks-of:_impleneuron-likeprocessorsare able r.oproduce

_rb!trarily comple.x f_neti_ns _J theb i_tl_,Ut.,.[2_]. 1'his existence proof is described .'_zain in

C.h_q_ter ,l,

Aroused 1960,l-lo.,,_l}h,_:invci_tedthe Pe_ceptrot,,a simple_euron with biu,xryouiput.

/tt_ import;u_t react|re of lhe Por_-Cl,tr,_|| i._ the: simple ].ea]nir_g r.lc that is guarai_i_,ed lu

ql
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converge to a sol,:tioa, if c)ae exist.* [43]. The fltncfionality of the Pe_ceptr6n is limited, as

discussedagain indetailinChapter 5. _

About the same time, Whtrow and Hoff invented the LMS algorithm for training binary-

• output neurons [1_] [67]. '/his algorithm _'vas later applied extensively to adaptive filtering

and control [68],an.d!stlmfoundatlon ofthe backpropagatignalgorithm.

In 1069, Minsky an.d]?aportprov_.dthe lim:itationsof the PeTceptron:I.some input.

output mappings ar_.impossible(e.g.XOR I)with a single]ddden layer,and 2.the number

• ofPc,rceptrons(neuron,_) requiredgrows fast_._rthan e.xpone_tlallywith an increasei_ prob-

lem comple_city [32] [33].

In 1974_, Werbos developed the backpropagatkm algorithm as part of iris Ph.D. thesis

in Economics [60]. Its discovery was not widely noticed until Rumelha,rt's publication in

• 1986.[46]. The backpto.pagatioa algorithm will be described again in Chapter 5.

In 1982, Hopflelddeveloped networks for associativememory.

In 1984, IIintondeveloped the Boltzmann Machine, a type of I-IopfieldNetwork thai,

usesan annealinglearningp_ocessgoverned by Boltzmann ._tatistlcs.

• In 1986, Rumelhart developed the backpropagation algorithm for training networks

with m_fltiple hidden l_tyers [46]. The hiddeu-la.yer neurons use continuously differentiable

sJgmoid function:; to perm._.t the backpropagation of error signals u_d for training. This was

an important discovery, as it removed the firs._ Hmitatk,n of the Per,:eptron model. AIr hough

• .... Wcrbos is often cre,_ited with development of the backpropagation algorithm, Ruraeihrt

is credited with the devdolmW,t of F: as a useful, tool for naural-nct_ork training, 'rh_,

hackpropa_afion _lgorithm ¢;_a be traced b_ck further to Ilryson's v,ork ia the 1960s with

multistage optimi2_tiou for dynamic system.,_ [6].

@ ........... The neural network field has expanded greatly since 1986: as mal_y researchers_have

added capabilities to the backpropaga,_ion algorithm and e×petimeated with applJcatiolAs.

@

1,4,3 Different T.vpas of' NeuraINetworks

Two major familiesofneural.networktypesexist:memory-ba:.ed and functiowbased. _

Function-basednetworks includefeedforwardsigmoidalneI:works(usod in thisthetis),

feedfurwar,J r_di_l basis function networks. _ecurrent networks, and Adaptive lto.sot_ance

Theory (AILT) nt, t_orks [141. These ilet_or].:s work by atte:.'fipfing to form a/unction that

ttl.: EXCLUSIVE OR lzgic (uy_ctiorl. fgOtq *. O, f{O,l) :: l,_f(1,O) :_ 1, f(l,l) = 0
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"fits" the de.ca, or trMning cases.they are presented. The hope is that this functkm forms

a general_za_]o_ of the U:aining data, and the.network will perform _:ell on new data.

l_unction-.based, netwc:_rks such a_i backpropagation-.ttained fee.dforward sigm0idM net,

works can be thought of as a mean:_ of:data, compression.. For example, if 1000_bytes of

data.are used to train a netwvrk whose weights can be described with 100 bytes, the .data

has been compressed, A,_with all data-compr.essioa methods, this one relies oa finding and

taking advantage of r_gularitie.,; in thedata set - generalizing. If regularities doe.xis_and are

exploited succe:_sfuliy, the orighm], data set may be reproduced to a high :lewd of accuracy.

Memory-ba:_ed networks include I.he Cerebellar Model Articulation Controller (CMAC)

[2t [3], ne_est-neigt|bor interpola_iorl, probablisti.c neural networks [51.][52], and Kohonea

Learning Vector Quamization [27]. Rather than learn agent, ralizi_g fun|:tloa eft the data,

these methods store exampIes of the training data in memory (for example, input-output

training parterns). When presented with a new input training pattern, nearby trahdng

patterns are recalled from memory and the output is a fimclion of these patterns (e.g. a

linear interpolation among ¢hc 5 sea.rest neighbors). The specifics of the processing dqring

learning and recall vary among tile architectures listed here.

Bri.efly, the tradeoff is that memory.based apl)roa_hes learn very quickly since they

simply remember each training input,, but the recall can be much Slower, since the near-

estneighborsmust be foundand thenan interpolation1perfi)rmedto producean..ou_p_it.

Function-ba:_edapproachestrainmore slowly,as theymust compressthe data_ntothe

functionalformatcreRtedby thenetworktopology,but have",'eryf_.strecall.Also,thedis-

_;ln(':tionbetween these groups is ,_ometimes blurred, as some sy:_tem.¢involve a s]c',nificant

amount Of processing, but may by. built around stored I;raining examples.

From a controls perspectiw:, function-based _etworks fit bet r,er with e.,dsting methods,

providlng a geaeri.c nonlinear ,:o_ttml elemc|lt. Function-ba_ed- nc_!t_a]-network co_tro]]crs

Imve been. used in ma,ay _pl,licati_ns [16] [17] [38] [.tZ] [5.l] [62].[67]. However, CMAC [2] [3]

is one exa.ml01eof a me|noty.ba.sed neural network that has been t2sed extensively ii_ co,trol

applications [23].

FeodSJrward neural networks 2 built with zfigmoidal activation .functions (as d,._scribed

abrwt_) were used exclusively iv. this research. Due to their general functk,n-approxhnatkm

capabilities, it was oh:at tiler the,_ would work well for th_,s application, However, another

rea:;on for their u:;e here i_ tiler they Imve been nsvd successfully for a wlde variety of

'_Thos0 ,!tnployi,g tto inteinal feedback.

0
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applications,and do aI_Pear to hold much prc,,mise.for neural-network,control appllcations in

particular. Other neural-network architectures exi._t of course, with di#_'ere_,.tcharacteri:,tics

that may p!:ove to offer advantages dep_'r, ding upon the application.

Radial-Basis-Function (RBF) 1letworks are similar in that they have a feedforward _;tmc,

tlJ,re; hut the activation flmction is different.-A sigmoid forats a hypcrptane (i.e. a poi.nt in

a-D ._paee, a lJn_._in 2-D space, a plane in.;3-D space, a 3-dimensional hyp.erplane in 4,D

spaoe etc..) .that separate,'_ the mapping ,,;pace into high and low regions with a transition

region near the hyperplazte. A radial basis function (typically a Gausdan f_mctioa) pro-

daces an activation near it certain point in space (i.e. a line segment in 1,D space, _ ¢i:¢1e

it.: 2-D ,;pace, • sphere i.1 3-D spare, etc.}. Statistical or iterative methods may be used to

choose the ecrttcrs of the,,,e radial basis funr":c:_s, a_d the _weigh_ings of these basis fimc-

tions, may be calculated directly or heratively. Thc:_e can be significant advantages over

sigmoLdal networks for sortie problems that happen to fit v.c]l with the functionallty.offered

by tl_ese networks - namely one. or two-dimensional mappings, However, a. major problem

with RBF networks is 1;hat larg_ numbers of hidden u nit,; are required for high.dimensional

it.put spaoes. Thi._ can be understood by considering how the relativr, volume _f a sphere of

i_.fluence of a RBF.decrea.'_es as _he diroensir)nality of _;he space increases. The problems ex-

tending to high.dimensional input spa_:es provided a motivation to.avoid RI3Fs in the study

of general neural-nc._work-coutrol issues hi this research. However, for a low-dimenslonal

.......... input space (:1.1) for this application, 6-I) f__a 6-dof robot), RBFs may be viab],r,

"l'hes_: m_d other difrer_;nt nem'al-netwt)rk architecture.= have many common aspects (e.g.

the issues of ov_:rfitting or sys.tem-level.design), and therefore, tnaz_y co_tc]usionS of the

tesearch-hcre-.svill-h_directl.v applicable m thl,s,:_ di,ffezent architectules.

1.5 Reader2s. Guide

'l.'ids chapter ha_ scrve_l a_ an it:trodu,:tian to the research that i_ prq._ented in this dis._,,r

tatiolL Th? r_,inaindct of thi,. the,_i!, i._ org;twi_.cd a:_ ft.,liows:

In-C],apter 2, tl,e exp:,rime,tal eqtdtm|eat (i,e, the robot) _:ha! provide_ the "d_lle:lg_:

p:-oblen," is tle._cribcd itt detldl, attd th,. particular" thrust_.r-m;tpping problom addressed i!,

p::esonwd.
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In C.hapt_.r 3, the ggneric issue of neural net_vork value to specific control problems is

addressed.. Criteria-are presented that will aid the eonlzol systems engineer ]n *,he system-

l_w:l design of each.given control system, deciding which $egm_,nt_. if any, it will be beneficial

to implement with neural networks.

In Chapt.er 4, _he new concept of "l?ully-Connerted ArChitecture" (FCA)i., presented.

It i:s u_ed with backprupagation_ and i_ sho',_tn to2mve_greater functionality than a sta_dard

layered network. Benefits of the FCA are outlined, with empha._is on its advaatagemls

applicability for cc_r:trol.

In Chapter 5, a ne_ method is preset, ted that a/lows backpropagation learnhzg with

systems containing discrete.valued (_.nd th,:refore not continuously differentiable} functions

[such ,_ the on-off" thrusters). This enabl_rtg method r_rquires or_ly simple modifice.tions to

._ta:ada.rd ba.ckpropagation, anh extend.,; to multiple layers of hard-limiting neurons or to

the FCA with no need for modification.

In Chapter 6, the reconligl_rable rteural control system for the fre_:-fl:,'iag robot i.,. pre-

heated. It draws upton each c,f the develol_meltts detailed above. Its good e::perimentaI

response to dra.=tic dcztablizing changes iJ_ the thrusters verifies rather dr;_matically _he

viability t]f each of the new ¢ont_ibu|ions naade.

Chapter 7 concludes thi_ disscrtatiua with a ._umm.xry of results and rec,mm_eJadations

for future research.

Q
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Chapter 2

Robot Control Application

Th_ control task ad(hps_(,d in this res_'_lrrh is the Colllrol of pc)._.itioxt and ;_ttitudr ()f _

free-flying _pace robot ',si_,g oa-off _:l_t_:sters. '/'l',e ,:hallenge presented here is to (atu:up,.ly)

de, mage mecha.nically a number of tl_.ru.,,tet-% a.nd then ha_'e the control sy_tem auton.,mous)y

a_d .rapidly reconfigar,., i_self in .*val time. so as. to maintain good coa_ro[ througkout.

.Moleow,r. :some thruater fail_.res are st rongly destabilizing, which place-: high demand., on

the speed (ff recovev.v. The exp,,,'i:netllal s3'stott, is shown in Figure. 2.1: _n:d _tt 0::ampl,,

thruster failure mode iv _hcl_.t,ll ili ['igttl'O. L').2,

COt'lt 1"0] li$ill_ ell'Oft tl:tustcr, is a colllplex, ttoulinear problem tl, a t is impoztaut for real

ipacecraft 1631. a|:d the nonli:wal anti a,hiptivo capahilitio_ nf tlrural Ile:wnrk._ ln,_k,? them

attrar:'tive f_: :hL'. application.

The robot used-here l,a; in fact previo'asly be,:n .!uc.:essfully controlled without- the. use of

aeural networks :56]. llow¢,ve", the icr, nver,,'.ir,n,_l) n:rt!,od reties o_zge,:,r.v:tric %'mmei nes in

the thru.:ter layout atxd does aot scale _c,!'. to t ht_.,t,:t ¢oat:i'.olle:.- with.highev.di.nen._iona'.ity

in tht_ il_pUl: and outpu_ ,[,ac:,_. A 1,e,_ral-net_ork-based appro.ximatiea method doe_, ,,'a',e

well to I,i_l)er.d!l:tcnq(Ht;_l t-hru.sler rolllrtlllvl-. ?tilt] d:)('., lIOt 1,21y Ill'rOll gt,t_lll(',lrb" S2,'Ill:l;C

t_ies, _0 it i:,rm'idv.._s_ rurl u:'e rtmducivr Io r,_collfi!_u;.,d_le c(mt:'ol, Adtliti_,:_;flly, Ihe ueu.*;d

;,pprc,actt offer:, r,:):nputa_ioaa] flexibility, slttie the tt,,tv.._rk t';tn 1.,e de.qgt_,,d with tlie tie-

,trod spr, od,/acrurncx" tradr.off, if ir_pl,.',m,,r.t,-d i_. p;,t'al:tl hardware, it r;n- br madr. _o bt'-

extrrmi.l_ fast.

'1 hi_ ch,tllrttgc |lroblont ;,,'its t !lo.st,i; it.');tit did :Ii l,i_l.lighth_g and dUflilill_ _(,)Ill(2 Ilf the rel-

o',;ll)t iSS)leS ]|i ll(,)ll'a', liet;volk o_,,ttol. It ;d_u se_re,, to farilitatr di.-cu:.si,,a and explan,tie)n

_f l ltL I::':tl;tl .l)etlvotk cot;t:ol.d,svel,.)pn:e::, s trade it, .the ,:ourst_, uf thi ¢, r(,-ea:,:h.
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[_igur_2.I:Stttnford-Fren-Flying Sp_ce _obot.

"l'fii_ highly ,lutonom_us j/mt_ile tohol Ol)_:rat_s i_ ¢h_ harizal_tal plane, uMnR all
nir.e_l,'hic, t_s'lsp_.fl_'ion lu _im_lale Ihe dtag.[r( e and ,,crr_g. chararferi_;tie_ of .,l, lee.
h 1,"n full) _e,ll:rolltsmcd plafi,ar laborat_ry.piotot,vpe of aiJ au'u,_ )tl|(l|t.§ frt,_ -17) Hlg
,_p_.ce robot cvtrll_lt'[': tt ith nf_.bottrd g,'_, thrtlsiet$, ¢lecl/'lca.l po_tet, ttlul_.t,roc_..,:sor
,',_lJ)lmt,_r .._',.',_l,.t, _iiltt_.in. Wil'_lC_ Et!J,rt:,at cl:,ta/eornn.tl.nic:di_.n.¢ ]mk. alld 'w_
,,'O',|_ei_t ! I rig Ili:,utilpll]h/ I1"_

e
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1.5

Nominal Configuration

I

After Multiple Failures

figure 2.2: Example Failure Mode

Magnit ud_ an _ d.;rec _zoJi o/ea(l_ _f th,', cJgh_ thrusters i._ indicated b.v the length a n d

&reetwm of rile hghtly shaded tth_ngteS. 'l'hru_tet fa/lure._ _rere :,imulared me,'ha,'_i-

,'al/.,' with _leak_.r thru_W.r_ and 90" .lnd.4.5 ° elbow,:. Some (_f the elt',aw_ dc.._t;,bihze

the roho, by changing ih._ :qgll. ul" _.l_e thru.,t m the _' direction.

The field of aeur;d ,etv,'ot k _:(_ntrol is xast. _o the scope of this re:earth has hcon limi)(.,d

to the u._e of fee,:lforw,',rd )_pura} nelwot_;_ 1 for a sl)erillc, ai)pllca._iuJ:, F_j)d-tu-e_ld deve!.

upmeat of a neurabnetw(_rk controller for ;t r(,;d,, utttplcx applJca.tiuti }.ig_Jligh'.s the truly

impurta:at issues for thi_ appi!ca_ioH. ;:m! the,,,, is..,ue:, are l ele,,attt to o:her reabv,'_tld ap.

plicat.ion_. Whet'f., pt)ssible, illfo, l:lz_inlt v, ill he pr_viced Io ;t]h)w _,,x|t_ll:_O:l Of ,he-_e de_e'.

Ol)tUe]_t_ to other applkt_tiol_,_,

S,vt,.'al _l,ecifi¢ z':tribul es ,._fl!:e .'.h_,_e:+ge prohl+,m +or_m;,n to o' h,,r co,I _<,', ;q,l,lk at i,:,,-

hwh,le:

I. The compk'te ,:c,;,tl(,I .,w,t.m is COml:l+,x. ,_0,',:,'vi_tg ih.. _ ir_legration of ._e,,'or;,t sut_,_y_

terns. I_ 19vel of ttnnl_le._i_.) i,_ _i,tihtr I,_ real.w,:,rld ccq_trol applientio:;: - it ha,.

ro(l_litelne_,ls for [figh.l,_.v,.:L h'.tman JJ_te:'lace. tr;,j,,:_ory pla:vfing, system !de:_if'ca.

tion. and rcconfiKu_;:'i,_ ,llalegv, it'd well a,_ 10_s-1o._,el o._,trol.

:2. |'rarfieal issue: such ,_,_seit.;or ;itt_..glatiOll,!ialllpl,t,.lat_ ,_olrr fi_tt, i',l[,'l_:'o_ttpl_! I'l,ll{ll)],

all,'] proce_aAr ,w,ler.tiol_, ilr(, v(,I}' Iiiurh [.H't'b('l_l.

_'rhal is Ite!',v_lk'_ ullh hi, let, L'_al fi::dl,a.'k su':h as dit*.ct!y fi'_m n,,rv, ork (:ltp_lt._ Ic, t_,-I_',rk _lt i ut.

lh ..... _:i,t di'm r,.,_t .! l_..t_.'ik, ttd[ lSe "s, ,! a_ part _,f _ fv,*,lh_, k tv_i! r_tl I...1'
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3. Much relevant coutrol tl_eory exists, in addit ion to sp_,cific con! rol know!edgo rogardhl_

1his coatrol application.

•t. h:fc, rntat_rt.al:c, ut-the_chan._,ed planLwill_r, eed to be exlracted thruugh at_ ideatifica-

tion proce.,s, so the learning _a_k is evolving contitiual!v.

5. Rapid adaptation i:_required to ,'egait;. stabitity and prevent 1he s)'_tem :from damaging

it ,¢'!f,

Ii. Omoff actuators presen_ e. _,,:L-difl't, re_:tiable fultctinn that lead: to problems w!th

, urrent learning algoritlt m:.

T'te comple×lL_' of the research task g,nerate_ fbe requirement lot a basic st.va'_e&v in

add lessinl_ this co:Ltrol problem: 'fh,, sy.sleln-level i_;slles hi items 1 tl rough .1 are haBdled

with a hybrid approach that ira:oleos an analysis at th_ t_ystem level of whore the' neural net-

work can contrihute, ::egments tht_ prob!em, lind makes full. use of conventional control attd

.;vsi orn ident ificatkm ]net hods, 'lh adthess i.%ue ttutnbe¢ 5, a modified network ardtitt, cture

_s developed to provid," f-_st initial learPhtg, at,d _,o aUow initial _nfusiott of a pt_.calculabl¢

:._abili;:ing cuutrQller, lh address i_sue t,umbet fi,. a new algorifllttl is dvw:top0d to p.0rfornt

,mt:mizatlott wlth the of.off thru_;lt,:'s, while :,till allm_ing tl_e use of _radiet_t ::nftu'mat,ioH

_o :,.cc<.lernre t he optimizatiolL

1.his chapuw ]ta,_ three l;._a.ior :-'ec| io1_:

I. 'll.e coutru] app_Jcarim_ and e_porlme:tia] _v_ten! (robot) hard_:';m, ;_:'('d,,_cribed.

"2. ']'lie t-hr,_rt.r m;_|,pill_ prubletn at tl_r, cen:t r of tl,e control, app!icati2n is d_,Sned.

3. ,k solittion ft:trnev.',:,rk is pret;ou'.od, including rhre o. _,:parate sol_ll[Oll in,,l_ oil., It.,|' the

_hru,ter It apl)i_. _ problem.

2,1. l_,xperimeni;al ._ystem

Iite expe;'imentM _ystet,t u_ed _l+ sludy i.,:_1¢'¢ in ,nlit_iqolllt_tls Iti|','i_atit,ll and ¢r.qltl'o_ Of

!l'ee flyit',_ space I'ohO_ i': _ht)_h in ['i_t;re ZI. The dosign and t on:.l:'uc_,ion tff this ':obot

;,re di_cu.-:0d thorc,ughly in i.St;}, lit that _url.;. l.'llman dr,sig: ed ;tl,d built the toln,t, and

_v,, it the capability To in_ol(ept alld cal,ture r, h'ee-'toaling obj_,ct, autot.t.,lllou.'-I;'. Tim

I,t !', tti_t_Ci I,at.dwaro n-iri,'_ificalioii l:,.iuii,.,d It, perl'oi'ln flit, e.',:pelillil.'lll :, d,tr.tlib+,d horo wn:

,I

i

i

I

i

i

i

I

--_iiiiiilliI_iii_IiiIii/ii|_



$

Q_.

2.1. EXPERL_IEX'IAL SYSTEM 17

tbe.installatioa of a,:ceterometers and. an angular-r,_te ser_sor, "l:he_e .,:ensor'_ aro u_ed in the

identification of.the characteristics of each thruster aft er m_'chanieal fllrusler fifi]ur.es c_?rur.

Tlwse minor hardware 211o,:lifications allow the robotto sense the a,:c_leration resultiltg froth

each of its thrus,x_r.,,, tlnu._ enab]i!_g tl,e reconfig1:t'al?,_ co,lira] symptom thai. is the focu, i_f

this applic_LtLOIt.

Operating iu a hor.izontaLplane, the mobi!e robot sirnu!at_s the, drag-free a_d zero-g

char,',ctorlstic._ of ._pace: it exl,ibits _Learly frh'tiontess moi:ioe, a._ it floats ahove a :/.7.1 _: ;_.(i:i

meter (9 x 12 foot) granite .'mrface plate all a 50 m!cron (0.002 inch) ¢u..qfion of air. |t

is a fully _,.qf-col_la[aed planar laboratory.prototype of a free-flyin_ space robot complete

with on. board gas supply, eight cokl.gas th,'us_ers fo,_ propulsion, electrical power,_muhi.

proct,s_or cornpul_r _,ys_.om, on-board eaxne]'a, wireless Ethei net d_.'.a/counix.unh'ations Ihlk.

an d two coopera!in_, manil_ula_ors[f_6_.

The rol.,ot has ama.*.-" of 70 kg., and is controlled with eigl:t tl:rusters, each nominally

producit_g I Newton of tim;st. Poqi'.ion ft'edb;tck comes ft'mr_ _t pair of CCD r;,mp!'a::

ID, OIti'_'t_([ tl) tile ceiling ;d2,_v_ tho tahoe, lwo cameras are required to. cover tlw tc,:aJ

surfa,:e area of lhe _vanite table. The cameras detect a pattern of I.EI)s mounted to the

top of the robot..,_, custom vL_ion professing board processes the camera OlllpUt, and

produce,+ l.)_itio:n hlfOrlllalioll at a (iO 1|/ _lpClah: ra*<, th;tt is [i('l'ul';it(, ltJ lJl*l h'l" than 1 +rim.

T-i,is [,r. _d, ¢'] vector i+Aigitally fihered ;_.d di!t'erm_o._dto ptod_lco e. vrlocily vt,,:lor. TI,,'

proc+s._ing is p0rfi_nned ofl*-boarcl aLd the. co:nmunicated hack to the robot via a Motox01a

.kltair wirl,less El I:t,i nv, tlat a,rccm:t_utt.ical it>_l_];tn|;..

The :,pecifics of the ¢ot_trd..sy.,.tem cul,',l,::)ents aa_..d_,scribed in. g:'_,a'_,v &q;fil i_t Ch;,p-

t,,r 6. ll;i_ sectit_ x_i]! fl_,'u.-, on the hardwaw c_,afl_a! oo t.h_ _,vonl_g_i'ahl,, eor.ttol _:,"_,:n_:

Ih,? Ihl:l|Mpl'4 ;llltJ lit t' ;4clp?l, rf._liloto[ ..

2,1,L Tltx'usters

(.-'oFIrtal lo fh(, ctmtl.O| s) _,f_111 Ift",i_:l itlt' th,' ;_rIllator- th,:ln.*,,Ivt,s, a- _in,:_l_ it, I'l_,'.lr,, 'o!.:_.

Ei!_ht or:off air thrusters ate us,:d, to provid_ r_du_ldafl! acl'.m_io,_ in a_ _hree degce,.,_ ol

fi_edum ufth_ ba,.e, Each thrust,,r prod uo.,s about I .X of ,'h;'use. ard can op,,ra_e efl'ecti_ly

at tat_,_ _p tu ILl Hz. Ft,_ th,.. putl,:;e.- uf tiff.,; coxa:o] apl;licatk,_,, lhey ca:, be mc,d_,ll,:d a_

p_ll'p ota off ;tct'2atur_:, ig:to_ it_g tl:aZz_ieZtleffects. I'[tJwev,.,r, t}t,., tr;,,:ien' ,,flee' s +vi',l be :,how:,

Io ill,paCt s,qet I[o1_ _f' IV' :ampl, r+:-avd d"slt'l, _f the filtela u,_.:d fc,l t],,, ac_<.h,it_:v_.!pr

signal,.

O

mmmemmmill
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t'igur_ ?.3: Phot.ograph of Thru,_ter Assembly

c3.,l_,of rhe eight cold..ge,.. _hruster _mL, li_s is shotvn. The bre:_s hex_got,al pl,_,.
u'ith # hole_ is the thru,.;rer nozzh.. Th_ braz._ v_Ive as._cmbl), is L)ehznd it, and
the s_let_oid is (u the rib;h_. The ,_ntire a._,.,mbl.v i_ mounte,J with an al,n_inum
bracket. G._ it._ed is air at 690 kPa (i00 p._i) t_s,'rt'oir pre,_ure, ,exititlg (o on,..
atnlo_phete. The convcrging_divetging nozale._ are d.vs.'igned with an (.xi_ velocity of.
Maeh 2, rdsr_l_in_itJone l_'ewtot_ of rhrlist pet' thruster Lf_t_].2 tJe .,,ulen,._,i ,vdve ha._
¢_ rfs129_li,.'_ f#lli(' Of c_t)U_ 5 /'/IS.

I

Th_ n_,niaal tltru:,tor :_t,zzle.- a_'e de_:er!bed in. [5_j. 'lh_six (,):_ve, rl_;i/i:g.diverging op_,_-

il_g: in each-nozzlo w,_r,, Tt_;_ehi,(',.l_,'ith a ctt:;toln form t,_ol. Tho (_xpan_iun r_.ti_) of 1.7.

_e..erv,.,it pre._sure ,_f G90 k l';, i 1I'111 1)_] '.,. ;,lltl e.:,:irpressure' aC 101 l,.Pa (1.t.7 p-'i) are (le.qgnod

_) )i(.,I,I aI, _,xit velocity of .Math 2. l_ig_:_'_.. 2.;_1shows at, iad!vidllal _htn:;l(;t-a_selnbl.v. itt.------

cl_dilll.; a solenoid valve that C(._llfl'oI;; I]l(' flOW thlough tl'tr, n(,zzle. Th,'. sc)lmtohL btlov;tt to

Ittomdi_zlt! .')f Ihe _;dvo. is spring loaded to _la2' ¢lu._et], a_d opens, fully i_-_;'tbouI 5 l.ls ,,vll,,l_

,'_;m-onm is appli_.d. "l'ho valve ha._ ;t chol.:e point of ahn, t i.gr_ m_ll !O.0i35 inch) dia:neler.

I
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'2.1, EXP_ftlME,"¢T/1L S't"STEM

Figure 2,4: Photograph of Two Thruster Assemblies

19w--

@

@

@

3"o sludy control recollliguration, a number of "fail0d" thrusters _mle built to simulate

dilrcr_nt {ailu:'e mode._. T],ete f_ilure._ indu,Je: zero thru-at, r_duchd thrust, ,15 ° misalign-

ment, aad 9[P nd.-'alignlnent, The hardwai'.'.- used to .,imu!.at_ pl',y_ically thos0 failur_ i:_

,shown ill I"igures 2.,.'5and :Lli,

The use of a conver_.,ing.diverging design resulted in a performance i_cre,-_¢ of 6._ 1.561,

Thi_ m_.y he :;igldficrm_ for thruster.,, thal are to be _:scd.<,vcly day. such as the nomiaal

tl, rusl_rs on this .,obot, Iloweve. _, tire "fai!ed'" _t_ru.,;tels wid_-6g-nominal thrusLxharact_,rig.

tics were built '_'ilh stra.igl't wall:; formed by drilling with standard biz_ ranging in diam:_.ter

from 0.2.5 rlm_ {0,010 inch) to 0.69 mm (9.627 inch), 'l'htm_te1:: v;6r,, tr,slod cm tim robot.

m,:asurJng .robot ,_ccoloration tn detormin,, the thruster strength.

II was I,nt p.s_ible to In,ild d_ru,,.t,,rs with gri, at0r thrusi.-capahi_ly lhait .d_L_u! I.;L

,Newlon.,. hy Ii¢_zzlv llmdifical iol_ .dml,,, ,'_s :lH)l'O air is roq,ir,,d, thv drake lmi|tt, in the v;_lve

causesa grr.,aterp.res_uredrop across:the Vii[V,?, and lessarro,.sthe llOi_l_le,A:_ nlotcopening:;

were added, and _he to_alnozzlearea increr,sed,th)'_tp,,akedat ."..2b'ewtonswi!h a I_,0_,'_

i,,:rem.ein areabeyond nomii>.al,and lheltdeclined,Obte.init_g_greaterll,ru::twould reqaire

macl:i_dng:ila.rg_.,rvalveorifl.ce,or ,:omp!,:_,_r01,1accm_ntof fit,:soleuoid.valveassembly.

Colhplotdy f;lil,.¢l lhr:l.,.lms w(,n, simul._l_,d b v r,, _zzl_,, wh It a dr gl0 0.% Into {0.010 ]nrh)

diametm' t.ol_ ra! !:,.: than tmi:,g ;,I._,.e.d ,ompl_t_ly. '1'}.i¢ t_,'_!r_.,l m t_hn,l! O.09.SNewton of
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Figur$ 2,5: Thruster Fa|lure Medea -- Reduction in Thrust.Level

Thruster f._ilure,._,are simulated _v rol_lacit_g the nonlina! thruster noz,zl_,_:with me-
ch_tilcalb" alt*,ttd tio_.zle_. The Iitb_ thruster, haz a _]mgle 0.25 ,_n_ (0.010 inch)
di_nJetet h,.,l,:, a_d simulntg.s a eol_)l)l('te thrusler fadute. "J'l_e-seco_)d thruster ha:
three !).69 _ntn (tl.O27 it,.¢h) hole6, aimula_ing n redfaced-strength thruster. "_'l_ethJtd
thru_.t,:t i:_a no_r_m.ll thrw:rer. ;tith 6 c,)t_vvrgitig-div_.rging hol,.s.

_'hr,ist. wl:ich v.'a._ 1/40,h of :_omilml, ;_ad effectivt, ly ",:urn,. |lowevi, r, th6 p_r(_.at,nc'e..nf a _rhall

l.o'.o mcan:_ The thi'usr,'.r can I',t'. hu_trd to fir,:, allowiilg all obs¢,/'w,t _a b(,ttor _nd:rsl a_db)g

oi" th c itlc_d ifi,:a:ioa- a_td r ect,_figur :1_i_,n pro co_.:.

Ih_.' voluttm of t l:e (hm_ber belv,'een the, valw. and _he ltozzle opeldl_g h,s a trart;,iel_t

t.floct o"_ ! 3rllst(,r p=,rforzi._ta,re. _Vhert tire valve c,pt',lls, il f;tk,.,8 _. fi,.aito ]qltgf|t of time f,: r

_ito i,re,;su_,' _t_rise to the _tead_,'-s'.ate press_ro (whid_ i_ dofiited bv _.he reservoir pressure

mir_us the Im'_,_,_" It,_.,,o,,,Jl_ plumbin;.." and acres, rl_o. valve}, Sii,fi]arl.v. tlttu_l ¢o_:i:_ttes

,:_!',:."(Itc. v._.[ve close.:, wl,i!o II.o cl_:mber elt_p_.i_::. Th_s _!tf_,:t ma._' b, -_sten i_i i"i_,u,.o 2,1{I.

G

Q
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2.1. EXPERL_fE._"FAL SYSTEM

F_gure 2.6: Thru_tee_Fa|lure M0dei - Change in Thrust DireCtiOn

Thzuster {hilur_ are sil_lulate¢l t_._,addil_g elbows to cIiat_ge ph._::_¢all.v the direction

of thrust. ]'he .l_° :tnd _0" elbos'.'._ _imulate _cver _. (and pc, tenriaily de._t._l-Mizmg}
thrtt._tcr misalignmcnts

_ince_ the ,t50 and_i0" elbows used to simulate thruster_failure iner_.ase the volume.ot;

this .chamber, this effect i:.: itLcroased .,,igr,ificaMly to the poifit that it is _te_ter than _he

sample peri_od of 100 ms. Fo_tunat,,ly fo_ th,: system ID process, thrusters telld to reli_ai:_

itt the, on posi_i¢_n for spvo_-al sar,_l_lo perir,ds. _o The, ?;'nn_ient :.fl_,-_s Carl b,._ tolerated.

2.1,?. A_.'celevoc:_el_ers, Angulap-B.ate .¢,el_or

Accucate acceleration it_ibt malion is crucial to, he identific,afio_ p_oct,ss. A,:celere.tion d at a

av,_ ust, d to itle,fify th:'uster faihr,,s lind bull:, a model of tl-:.o robot for veconfigurati,_.

Is.-ue:; such as set:_or noi.,e, $t,l_sc,r placement, ,._mple.rate selectimn, mechanical vibratit_,_,

_k.ct_ical, noi_:., a,d thrustei trans_m,t d:ar;,:_.eristicsall co_tribmo __o_he difficulty i_ c,b

I;_!IHi'$, cl'_ll'a'e licc,'l_'l';.lli,.Hi HU.hal'.
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Figure ZT: Accelerometer Photograph

Photograp,_ of _he 5y_,tr,.m L)on_er 4310A Lincar _ervo .4ccelt'romet_r. .Actlia] _iz_
i._a._shown: ow,rall length Js 76.2 unn (3.0 inchc,¢). T_':o aeeelerome_er_ are mout_teJ
to the rr,6at h.,t<c to memmre ttans{a tit,hal accele.ral ion_.

@

Two Systton Donner 4310A I.iucarServo Accelerometersare used. Theso accNc:ome-

_,_r._,._ht_ w_ia Figate '?..7.. haw a. range of= 1/_,: a_d _le accurate to hett_r than 0.1 milli._; 2.

The accul acy of acceh:vaT io:_ ,.ca_urea,.c:tt_.i$ lh_lited n,._t hy ! he act!ek, rtm,,l,,r._, but by t he

I)rct,!lLc:e of extratu:o'ls vibr;,tion,.., t-'or(,._a:nple. t]lu small cooling.fan in the wir,_;es._ Eth-

:,met receive,: a_ the top of xlw rol)ol pn)duce_ a 70 Hz vibration that is clva:ly m_a.c_lrJ_le ....

.l accrh:rom,:ter mounting pochions (m the robot base plate.

As wilh all Sy;;troa Duxmer acceler.mr,ters, ':he 4:IIOA u._e_ a force balance, A proof

mass is suspended wil hi_ the accelerometer, ar, d moves siiy,htly ]a _,_._pou_e to accelerz,.t.ion.

¢._ dep!,cted i1_ _igt_re 2.5, Thi._ diep]acement is x_ea_refl hy a po.q_ior d,_tector, al_d a

A-|ull • ."t _1 ._pi,_ Ifl_at I¢,n.¢. is pr,;,:efil _d i_ A I,p_lld! _ B



O

2.2. F,XPERLSIENTAL SYSTEM 23

control circuit.a_Ld torque coil are. a.qed to drive the displacement to zero. The control

current .used to keep the proof ma_.s fi'om moving i.s ampIified and used as the ace._10rometvr

o_itp_It gigna.1,

l:iyur,_ 2.8: Acceleromeler Circuit.

l'hesetv_conerol circuit contained within the re,roe.balance accelc.rom:tor _sshown.

The control current used t_ kc,_p the proc, f mr_ fr,;m moving _s ,_mplified and uaed

ms tho uect.ler_ttioa szgmd ............................................

A Wat.q:m l nd u.,l ties angalavrate s,;,_(_r (_tu_dot # A R S.Cl31- ] AV ) i.,, used. i hisa:levice,

ado c_lled a tuniug-fon'k.gy!'o, vibx'atx,_ a.r01rting h_rk arid measuz'es+t2}e O.,riolis force.on each ___

of the beau.s as 'he fi)rl; rotates, thus produciug the _ngula,r.. tale signal.. Accuracy is be_ter

than 0.1 °/inc. but thi-_ need., to be dif|'etentiated to obtain anguI_x_ acc,qol'_tiu_t ...........

Th_ acceh,;'on_ctvr ,signal: aud a _,g_da :- rate sig;:tal pa s,,, Ihrough analog pre-ti[ters wit h..

twa (',rith:ally damped po[v., _._ 7.5 1[7. ']'h,_ at,' fhen.s,q."npled-hy tl_e A/D ¢onv,.=rter r:t a

200 Flz :_a_$,l)h, rate (whih, th,, cont rnl h,.l) r_n_ at 10 llz), 'l'he aco.qerometet s!gn.a.ls are

diigila.lly filtered with fourth-_wd,r Bult,tv,,m.th filters with pnlo:_ at 2", 11._. artd th0 angular.

t_tt_ .,ilgi_al in digitally l]lt_red _ith a ,_cu_ld order }h:tterwc>l.th filtc,r with poles at I0 ID,

Angulai' accelerat ilJil i.', ol)laiiw.d by _.tfirst differon(e of the l'af(_' si,,_':k[
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At this point, the filth,red acce]etometer signal_ are combined w_th.the.angular-ra_e and

ang_fla r-acceleration signaJs to produce the base acceleration,'., iz_. [x., _/, t/:]. The. computa-

r.ions made to combine these signals are highly dependent u2on sensor plat'eme.nt, so the

s,_n_.or., were placed to yield the hfighest possible accura.cyk.as show:_ in Figure 2.9.

TI,e acce]erometers measure acc.elerafion i.a one direct_.oJL at one location On the rob,-:

b_,s,,, so lhe basic task is to convert the._e acceleration signals into acceleration at tl-Le c_ ::er

of the base. If it were pr_.etlcal to locale both accelerometors witt, tl:.eir proof mas,,.es

exactly coincide, n( will, the robot mass center, one I)Oinling straigkt al._ead i_t _-x, and the

other pointing in +y, no cornp6rt:,at_9,_ w<_uld b_. required. This ).s noi prac(ic_fl, so the

COml)ensa tiolt r_quire)nertts are:

i. R.e_.oveangu)ar..acceletatio__effects(neededifthe accelerometcrmea.su:ement axisis

_ot alignedperf<_cflywith the center¢)fmass (d.m.),i.e.l_a:;a ta_)g_ntialcompone_)t).

2._i_eraore centrifugal-.acecI('ra_io)_effe¢_s (:_eededifthe proofm:ass(:sare not locateda)

the ,:.m.and tit(,mc,'u_)r(,mentaxe._have _ome r_.di_]COll2]3Ol'lertt - e,._. tJ'l.(_soot_e(:ts

occur even when the robot spinsabout i#;e¢.m. with ,noaccelorn.tionof the c.rn.).

3. Rotate translafional-acceleratio'nvector_:orobot frame (heeded ifacce]erornetersare.

not alignedwith x a)_dy axes)

In theory,the a,'cel,.,r_,m,,t_.rscould be plac,:danywhere on the bnse (a.=[o_gas _hey are

_=o)perfectlyparaLl_.l),and cet_trif_gal.andangul_r-accelerz=:ioneffects¢o_Id be snbtr;_ct.oa

I)v ,:alc,_]a_ ion. Ilou,evor. d_)o t.o th,.,-dilT_ e_,ce_ accttracy for each type of sen_or, choosit_g

the correct configuratio,t .will res_flr i_ better acceleratio,_ /tleasul'elllell(s. Taking _hese

factors int,:) c,:)nsidoratiol_ it wa_; fou:_d tltat:

.

_°

Ang;tlar accel,,,r++iio_ effec.t.s.-wouM be difficu]t to componsate dtto to a r('h+tively noisy

angular nc(.el<,ral ion hi_:';nal. For thi+ reason+ the accel(,romelers are aligned act:ur_te|y

with the. c.n). J.tl'.e. robot, eliminal.in_g any +regular +_c(:+'l(+r+d.io))ctrects.

The anlgul_r-ra_e sensor (ARS) provides a clean signal, ._o eel_ttifitgal accoler;_io)_

etN'cls c;In bt' accoun(ed tbr by comp_);_tio]_. However, the effecl is l:,rop,._rtional

re the radial d]_ta_ce from the prnnf l'o;_._: I(:, tl.e (:.m.. ,,.o the acceh;romei(,rs_ are

I)n_itic)iwd as clo,:e to the c.m. as possible. The dista_t,ze-_s ,10.6 mm (_.83 inches).

.a,t; a ddttim_.al c¢;mt,]ication is tire saturation c,f )h<, ARS. This usually occ,_s only

@

Q
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Q

/
':_V / robotgeometrici ! /'_;_]_ \.nd mass, enter 1 _ \

"%. • • . 3"":

/ '.,_:_ ._,..._
'.._Li/

Figure ::.9: Accelerometer Mounting Locat ions

The _ccelerometers a:e mounted orthogonal to each other, wnh their seismic centers
ascloseCotherobot,:enl.erofmaas aspo,-zible,and alignedradially_sJththe center
of mass. This [acilit ste_ the removal of extraneous acceleration, signals (i.e. from
centrifugal and angular-aece!eration effects) by minimizi.g their size and providing
good #en_oJ_fig their removal. For example, the angular.rate signal is eleaaer th_a_
the angular.acceh,rat ion _ig_al, so anyula.r-acceletation effects are zer_d by align-
men.', with the center of m_,:_, _H_ile centrifuge! effects are cancelled by cal,'..ulation.

0

@

when therobot spinsout ofcontrol,beforereomfguration, bul some sensingisneeded

(both for.centrifugalcompensation and foranguhtr-_cceler_tlo_tme_eutement), x,Vhe_,

sature_tionit_detected,angularr_.!e.and _.ccelctatiouareobtained by d_gitallyfilterhtg

the vi:_ion-system positicn signal. The ,,_ngular-rate sen!sor is used when possible, since

it is one ,:lefiva_.ive closer to the mea._urement needed,_and therefore, less noisy.

3. Ro_;atlonttl lrar_sfcrm,x!iem ]. acccmt_lJshed with a 2 × 2 trau,._forme.tion matrix.

"lheresultinga¢¢elerometermou_ting lo(atiousare shown in Figure 2.0._'_hecalorie-

lionsused to l_ofrom the .,cn,;_sto the finalaccelerationsign,_l._at,,showt_graphicallyin

l:'igur,_6.3.

This reton:struct_onof the _ccder_tlon vectoris(arriedout _.ta.2(10.Hz update r_t_

on.board the robot. Examples ofdynamically correctedand filteredo_tput from the ac-

celerometer__ul au[;ular-ratesensorart,_hown in Figure2.10.
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Figure 2.10: 'rranslatiortal and Angular..Aecelerat|on Signals

Shaded area8 nidicate lh: sigli aml d,Jrntion of a _.htu$[er pulse, lO0 n}:_is thP
miui_lmm-lcngt,5 pulse usvd lbt com.ro_ Lag i._dile to the transient resl.mS,'_ of the
thrustS; and the" eff__c_sof tile analog a.d digital fih,..ring 4ccoleratio_, i,er_,lst:; for
longer thaa the thruster pulse ,,¢ldlh ,lue to the /_nite char_bet size b{:/.',._en the.
va,!ve and ntrzzle m t_,e lhtuslev a_seatlbly. This data i,¢still noisy iRd.t filtetit_g,
but leads Io accutMe ,;doi_ti_cation when u_od with the htieat.tegres.sior_ proce_,.,_
de:_.cribcd m Ch,ipter (1,

i
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2.2 Thruster Mapping

@

@

@

2.2,1 Problem Definition

The _:hr,_degreesoffr_.edom(r,V,¢:)ofthe base are coatrolledusingeightthru,_tersposl.

tieredarou.nditsperimeter,asshown inFigure2.11.Each thrust_rproduces both a torque

aridnet forceon the robot.This coupling,combined with the on-offnatureofthe thruster_,

substantially complicates the control task.

rI

I"6 T7

desired force(--==-='---_ thruster pattern
[Fx, Py, TV] I Thruster ] [TI, T2, ...T8]

....-

Figure 2.11: Thruster Mapping, Problem Definition

At e_'_ry #ample period, the. Thruster Mapper takes a d_sir_d ibtce vector,

IF=,.,, Fv.,,, r,;,,,], and _nds else.thruster settings, ['/'t, _/_,..... Ta], to mini.
Iniz,'. a spccilied ¢05t fvactiom The oa-off thtustdts al_d coupling between for('es
and tnrqm._ make. this probletn difficult. This raappfltg is ct_lculatvd"several tinm_
per second, motivating the dereh)pmen{ of a nonlinear approximate solution that
eat, toy. it_ real ti_2e. Thc thrust_r mapper m,L_t adapt to change_; if2 thtu,Jter chat.
actcrit_ttcs, Detvlopt_etlt ofa tivut-al lt..twark to if_plm_em tins '"]'htuslet Mapp_'i'"
iS the f_gcu$of"this application,

The thruster mapping ta:k, also sho_ n in l.'tgtt.ro 2.11, that t,u._t be petfc.rm_.d during

each :_anlple poriodi, to take &n iaput vector of cofltilttlO;l_,..vahl(:_] desired forces slid torqttes,

i#_,,, I,'_._.,, r,;._,,], attd fif_d the output v_ctof of discwc.p.-vaha0d (off, _.,n)thruster vanes,

[TI, :1_..... _/_], that tztiftimiz_ a spo('ified cost f_lnctlott.

The robot-ba:_e-to_i:ro] strategy doveh_ppd for this syst0m is shown in l'igt:r(, 2,12. 'lh_,

complt_t,.,control :._yst_.mis de._crlbed in det all in Chapters 3 and 6..,t. protiort im _d.tlerivativt,

Control lit_v prctdu¢_s a culttiauous vector of desh'('d fort:e::, f#,,, based on pn,,iti,n attd
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28 CHAPTER 2. ROBOT" CON'ITtOL APPLICATION

velocity information from the overhead _'{slon system. The thruster mapper takes this force

vector az_d outputs the pattern of thrusters to be fired on the robot.

PartitiorJng the,-ontroller into a "control module" (PD controller in this case) and.a

"thrust_r.mapper_" greatly simplifies controller deslgx_ since both components ca.n be.de,

sig;ned indet!et,dently. Smooth.actuatio'_.is still po_slblo du¢ try_the low thruster impulse,

which r_ults from high sampte tare (10-60}Iz),low thrttst(forceper thruster,F =: I N:

torque pc_rthrust¢,r,r = 0.14 .N-m) and high m_tss(ma_s, M =:7{]kt¢:momeiLt cf{l{ertia,

I_= 3.1 l_g.m_}. 'this strategy was originally &:veloped as part of a conventional control

system for the robot [56}.

desired desired thruster

stat0v_.ctor, forcevector, pattern,

Xd'_"q--*r PD _('--_ru, ter -_ T *

X_ -_'''°'`tr ell er __M'ppe r (NIN, j l° l --N.o j

[ [°°J P --o tiO; _J •
Sengor

Figure2.12:B.obOt..Base-.Contro{.S_rategy

The .'.o_trol m_dule treats th_ _hr,sters _ l,'ne_r actuators. The: tl_ru._ter mapper
niu_t find the thrrister pattdrn producing a force clo.¢¢.#t to that te,la_:_ted b)' the
h_L_e¢o1_tro.f m _do le.

2,2,2 Co:_t, _NJnction

Since._taclt thru_iter can ouil._u! otlly full thrust (nomhmlly 1 Ni,wton) or no{hi_,g, the th:'us/er

mapper i:_ I,¢R capabl(: of exactly produch_g' the requ_st,_.d forc-e.. The bali," approarh to this

problem istod,dlnea _o.st[uficiiof_,;aidthen tofihd.th(,thr,tsta,rl,;_ttera.[2r'{,'.l_....._].

that _ididmixosthi:_f,:.ctluI_. Tho sp,,cificsearchotr.0uraJ.n0twotk{'uu,'tionallha{_plngused

to "{_{{dlhe thrust¢,tpattY'a" willt,o,lisi:u_ iu-L'l|ap{0r3. It,tl,i-_r,:s(tareh,_,g,,nota{

costOlhcJior,was _._Od_h_t ifi¢:ofi)otatemthe normalize,{f¢_rcc0tiervectorand ih,,,_,no_;,iit

of _;as u._r'd. '[ his fu_'lcti_,n is sh¢Jv'fl 1i, [.q_{atio_, _,l,
$
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i

where,

(2._)

d = thruster-lnalLging perforntance cost

T = binary thruster values,[ Tt 7'2 7"3 7".i 7:s 2"6 T: Tn]

i = thruster number

Fz.,,,(T) = net force _rrot in x-direction, (d._,,,_-/._._,,), resulting.from T

Fv:,,(T ) = n_t force error in y.direction, (l.'vd,, - /½o,). resulting fl'om T

r_.._,.(97) = net torque error about p-axis, (r_,a, , -- r_..,), resulting frown T

_,,o,,_ = ttormalizing factor for F_.

/_'¢_o.,_= aormalizlng fitctor Ibr[_

_'norm -- ,ormalizing fitctot for r_.

au,,, = gas-weighting parameter

Inmatrixform,thiscartbc expressedas Equation2.2,

where,

15

J-= Fort(T) 7" N Fe:r('rl ÷ o#_i _ ?_ f2.:')

F,_rr("r) = {F,.,.(T) F_.,,(T1 r_,,,(T)] r = fctc_ roe-tot

.. L

: 0 _-;_o,._ 0
0 0 =.;L..

?ta'_r _n

N = norm_i_inlg iiiatl'iX
(2._)

].f ti_0 roh_,t were eqtfil:.PCd _ith lineai actuatot_ (i.*. "pi'oporlional thrt:sters"J, a v, etcr .

o1' colttiftu,_us-valtt_d actual fnrce_, [F_,,.,, 1_,,,. _',;,,,], c_uld be produ(ed that exactly

equalled th_desired for_-e ' " _'eClOl. [1".,._.,, i"_.,, r_'.a.], t0quest ed by i h¢_co nt roller ( i.e. d =: 0 l.

ltow_v_r, a. pt.rfect mapping is not g,'tterally at'hievable wit h tli_cretc-valued thtusti,r_, alld

tho weighti_ig parat,_uters selected ill _.he co:d-functioll define tile dit,tributioa of error {i.t..

ti.afi,dallonaI feifrp otrir' ','y. l'llfai hit,;li .¢i-lrtc,. Pl'fOr 'r:..lab liSitl_(! }. SOleeiiOilof the ii,JriliaJiifiilg
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factors and gas-weigh_.ing factor in Equation 2.1 define the. cost fimctlon and the re_ultil_g

optimal thruster mapping.

Th_,ougljout .tl_s thesis, the _|rmalizing factors used a.re the nomi21at force and torque

valuds produced by firing a shtgl.e thruster. These values are indicated by F_h_jt,,, force-per ....

thru_tt':t, and rtr, ru._,r, torque.per.thruster. With no weighting on gas.usage, this resuit_ in

the mi1_imum-length force.error vector i_ normalized.force space. This.i,s a simpl_, _itraight-

forward, nt0thod that result;; in a good thrustor mapper, and is used for a,alvsis purpo._es

in Chapters .I and 5. This i,,; shown iI_ Equatiol_ 2..1.

T l\-_h,_,t'., ; -I- k Fth_,t_, / + _,ro,,_.,,, .

For the exporir.a_rntal im.pl0mentutlon, discus._ed in Chapter _, an addition.d practical.

i._su,s is ptesent: g_..s usage s.hould be reduced if it can he achiever1 with nlt1_imal effect on

force.mapping perlbrmance. 'lb achieve, this, an additional co,_t is plac0d oa ga6 usage,

so thal. if _'o candldat0 vectors ptodu,:e _dmllar s|ze force ,._rrors, tl, e ,,ore fuel._ffici0nt

one will be chosen. A good b',dance hotwevn conl.rol accuracy aud gas usage is f0tnad with

ctaa_ -- 0,5. 1'hi:, cos! function _s 8howit in Equation 2,5.

thin J = +. _ + + Ti (2.5)

In minim!zhtg the force error only, the thruster mapper doe_ nol re,sider tl=e dynamics

t,f the pl_ant, it assumes that tl,.e ,¢¢,._ v0ctor oUt-lLU! by. the contrc|ll0|' feedbacl_ law i_

cho:;en carofully enough tltat it _eedg.only concern itself wit h producing the. close:;! matching

/:_, In thi_ appllcatit_n, tii_., contt011_r ,_omponem i_ a sirt_ple_prolmttio_,al-plu_¢-dc_rlvattve

conlroil0_ (showrt if_ Figut'0 2,1.2) that do0,_ not take into account IILe thruster lifi_i_;tl.iolls.

Ide,_:.lly, the controlJ0r .eo||,p_,n0,1t would he .t_,var/2of thruster' ltmt_afioh:,, possibly, l(_adlttg to

a _erging-of _1i0 control _,f_dni_tppiftg cnmpoh0nt:.. Thi,., con_pl_x tiu_dJ_aoar dofit_ol p|'oblem

i:_ not addres_0d hero. but a first st_[_ is lm,po:_ed iathc form of .t n:,oditlol c,_st fitrwtiott it l

Appet_,tix A.

lit !_t|rrtnl_tt'._'. the o_st function was ehos|:n Ioho the leugth of the norn-,alizod force.error

vector aullftte_*ted by a co_t on g_s usa_,,,_ where th0 fiofm_dizatiott fa,:tors wet,, tht, force.

per- th_ u.,t_r, l'_,_u, _e,. and I,orqal_.p_r- th ruster, eth,,,_,. I'_o_,e,Ual,networh an|aly,.is only.

th,. co, t function shown ili Equalimi 2.,I was used. 1.'o:' e_po.rifl_ental itni_lome| ration, ta_

ftliw*i¢_|i showll iil Equatioit _/._ was tised, fedt:ti,g gas us;,g_. 'l_is Ill_ u_ter m,_q0fmr trade_

O
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off force error for a reduction in gas usage, just as an optim.al controUor balances error with

control effort._

Selection of the cost function_ definer the correct thruster pattern for any.give_. _ dCsi,-td

vector. The.mechanics of how_this correct vector is actualb, fo,___md(i.e. search or neural

ttetwork-based functional appro.'dmatlon) is deserih_,d below,

2.3 Solution Strategy, Mapping Metlmds

Th¢ reO_nfigu_ati0n strategy propo_ed in Figure 3.1 re,:tuires an "It_direct 'rrailtlng" ap-

proach, where the neural network atu.'ml)tS to find th_ best mapping based on the latest

e_dmate of th(: plant mod_:.l, and then adapts itself to Optimize mapping performance. This

indirect tra.itdng approach is showtl a:_ the top part of Figure 2.13. The wood "indirect"

ltere refi_rs to the l_tck of an optimal teacher, so the network adapta_ivr, i_ directed by

exp0rim,:ntaticnt (in siritul_tion} with a tnodel of the plant. As scott i,1 l:'igttre 2.1.3, the

network's thruster pattern is passed through a tnodel of the robot,,.and tht_ resultit_lg force

vector is ¢omparrd with the desired force vector, resulting in the (_rror signal _lsed to traitl

the notz'or]_ (without th_ dire, etaon of m, opthmd teacher).

While "irldirect le,'lrning" is the ulthnate goal here, two other method:_, "direct learning"

and "exhaustive search," are developed as stops towards of this goal. All th._ee methods are

summarized in tiffs t=eetlon.

h) the d va.%pment of an indirect traiaintg procedure, ,ev(mi[ issu_.s murat be addr_st;ed,

includlnil neurai-i_¢twmk ,_.rchitecture ;llld OptimizzAiuzt (also r(d_etred to.a_ trainittg, learn-

trig, or adaptation). To "separato variabtes.'" and p._mi! the _tudy vt' these generic issue_

separ_ttely, an intermediate step, "Dater/Training," 3s introduced_ This step, t_howtt in the

tniddl(: part, of Piguie 2.13, pern_tts tl,e devel@t(tent of.u0ura|.network ar_'ldtectur¢ s010c.

tion ;tnd optifnizatiua I)roc_.dtlr(:,_ which r.alt theri bt_ eatri0d (_vcv directly to the illditoct

trifining p_obh,fn.

h) direct t.fMtfing, tits n_tv,ock 1_ t_,ught sit:._plt' to copy art "optimal teacher." itt :lai_

_a_e the optimal thrltstt_r mapping. 're ubtai|_ this optimal inapifi_g, a so.arcli t_t_st IH

l)rrfotmed over _ posstblt: Ihfust,.r ,:utllbinatiofl_i. l_o*tunately, when all thrust(,rs aft.

working _'orrectly (i.,:. I:eforo the rectmfiguaraticm dine to thl'uster failures), symr_etties e_ist

that eat0 si',lil)lify the ,catch pr.ross, 'fl,is lIOlt'-llC'lq'It]-li0t'¢.'Oi';{ appload:h as shown in _.li._

botton-i p_)ft _*f Figlirv 'LI3.
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INDIRECT TR_Cfl'_G._

DIRECT TR&INING

EX]:L_,USIV_I S_t.RCH (optimal solution)

Fdes: desired force,.
[Fxd_, Fyd., Tvd.]

Fact: actual force,
[Fxact, Fyaet, Tract]

T: thruster values,
[Tz, T'2..... Va]

Topt: T that minimizes
the cost function

error: signal minimized
to train the network

optimal v_apping

F:lgu_e 2,13: Thruster.Mapplng Method_

[_dir,_ct trainit_g0.e. wi_h no. optimal teacher, adapta_icm i,_ b_ed upon perfor-
mance with the robo_ ntodc,l) i_ the ultimate goal, hv_ direct training is u_ed to
stud_ archJreetureand opthni_.a_ion i:_u_,s,and an e_chaustive_carch (symrn,_rr.v-
aided) i._us4,.dto ge,_erate lhe optimal mapping reTdrcd by direct trai_itlg.

Th_e three different t¢,chntques have also beea used to make possiSle evaluation of

lW.rformallce and coa_patismls. Dt_e to the discrete aa.ture o{ the thrusters, eve_ the t_p.tirnf_l

i hru,_ter mapper results-in significa,t ermrL This optimal.performance l_'vel is _L_edto

ewthsate the p_,rf0t_,._nc_ of the neural-network cofitrol system. Also, use of. the direct

trahiing petibttaance as a he,_ch,nark.for evalu_tioa of tl_ i_direc't ttab_iag_perforrnav_ce

atluws atudy of the, i_ue:._ involved i, inditt_ct training,

Altho_gh the final goal is it:direct tr_flvting, tile methods need to be develt_lWdin rc..vctse

order, i.e. (i) optimal search, tht, r: (2} direct training., tltea (3) ladh:ect trainln K, I':,d, s_:x.

cessive method budds upofi kr, owl0.dge gai,_d itt the previou.s atop, a_ they w,rk towards

the fih,_l f_.OaJof iltdlr_:t learning. "]'h,.,-first step contrJb',ite.; the roboi.bas{,.co_it tel :_trat_,gy,

aml al: ()l)timal _o]utioa tO b_, us,,d ar_a_,b(illchll:lalk. 'rhe_,coad :step¢ontril)_m,s under-

_tai_dilll4 _f ari'hil_'_ciurearid 6ptimlzalir, J! {_su,'s, Tl.'c_taaLstel_ cont_ibute_ a f_,._wl_arni_;
O,
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algorithm to_accommodate.£he on-off thru::ters. The result is a lea.rning system.thai can

he used in the reconfigurable control application. Segmenting the pro)_lem i1_this manner

resulted in a .?separation of variables," "and _dlowed for concentration on one issue at a time,

These metttods are pz.esented in the order they were de.re.loped, since e_.cll ozte builds

upon the previous step;, but the final method, indirect training, is-the.one used in the

r,_configurable control system required when thruster failures occur. Presenting the search

method first also servo,_ as_-a m6tivatlon for the neural-network approach, as the ]irrfited

exteasibili_y of this method is highlighted.

2.3.1 Thruster Mapping by Exb.au.stlve Search

The fir_t implementation., SEARCH, used at_ exhau:_tive search at each sample pericJd to

find the thru.'_ter pattern that minimizes the force.error vector 156]. Symmetries are used

to reduce gre.atly the search space, enabling it to run in real time at a 60 ltz sample rate.

This solution methc_d does not scale well for a three,dimeJ_sic_nal robot, or when thruster

failures are allowed, disrupting the symmetrie._. This provides the motiwttien fbr u,_ing a

neural network: lhe neural network is use,d to l_art_ and :implement an appr'oximatioa_ to the

optimal solution - one thrit can be computed in real time..

The idea behind the exhaalstive ,,;earch. is that there i,re a, finite nllTnbt:r of pos:;ihle

thru;_te_' ¢ombination._ (in this t.ase, with eight hi-level l hruaters, there are 2_ -- 256 com-

b_,nations), so the tt_ru_tez'mapper can evaluate each possible co_abiaation, and choose the

one that minimizes the speclfied cost functloa. This pr.oce_s must be executed at every

sample period, t_oto _peed up the proq:es:, it is wry helpful if the synllnetries in !he system

can be exploited.

Search Shnplifleation Using G_ometric Symmetries

I:_"the thruster_ ate all tire ,,an t_ st_engt.h (the nominal configuration assumed in tltis

example), firi:tg two opposing thrusters (e.g. 7': and T_) will produce no net thrust. To

eliminate these ttsel_.ns co"nh_nations, the eight on.off tl:r_+,;lers, {7't, '/h .... , 7i;], may be

cc+nsidered as four bachwards.off.forw;_rd.,, tl:..s'u:;tels Inn, Re, 1_$, R,_],where, for example,

R_ re,presents the reaction force +'0suiting from 7': and "/_4.This.reaction force ra.presentatlon

o:+n be us+d he_'e to re.duct, the posslbilltios to 34 -- 81. blow the robot is col+sidered to have.

4 trl-level t hrllstrrs in.sl,r.ad o1"8 Ifi-lc'v<,lthru:+lers. "l'h_.__inlplifira!iotl is valid tvhc,never twrJ

tl+_u.';t_.tsof _tUl.U._lmagnlludp at_ difactly oppos.ing.
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• possible force
vector locations

(normalized thrust units)

-! 0 I 2-2

Fx Fy

Figure 2.14:Possible Force Vectors with Eight Symmetr|eai Thrusters
[;nits tire in nom_aiiz_d thruz_, units. Each o£ tee t)5 circles represents a force
vector that is achievable with the nomiaaJ configuration of eight on-off thruster._. A
• i.mp/il_ed version of the thruster mapping problem is (o _nd which of _hese circl_:s
isclosOSLtothe:desired$_re_.,vector.The problemiscomplicatedby th__.addflional
&_ires to save gas and to accornm_da_c for failed thrustezs.

0

The next levelof firnplificatkmcomes about;due to-theredundancy in a,:tumioaca-

pal.,ility. Eti_mination of redundant combinations (e.g, firing Tt _nd _/_ ptod.uc(:s the exact

same net force v_.ctoxas firingTo a.x,dTa} reducesthis number .!:o 65. Since redundant

combination:_ occur due to x_mny tht,st,.,ts havifq; common strengths axed regular positions,

this si)nptific,_ion fails when the,,a conditioti:: arc not met. Tll_s_ G5 remMning available

I hrust--vectors are plott_d in l_igure ',.k14.

Sym_,)etrlesabout the a'- g,z =._, and g - _;Blane.,_ allow u;,t_) consld0rca,dldf_te._

in.the first octant only, r0ducing th(, search space to 16. The film] symmetry is about the

= y pla,e. This further teduce_ the number of amdidate vct:tor_ tt) 17, restdti))g in the

11 loc_aio,s shown in Figure 2.15.

Th.a l)ror.edure to implement this symme_ry.aid(,d searda is to, take. the desired force

v(,ctor and _se th_ symm(_trie_; melitiOned above to transform i1 into the first half of the

fif.q ortaI,t i)_ ((,l'C(. _ ._i)ac<' ([/_i_,,, F,#,t,,, r_a(,]). 'riils is, doric hy takifi/; the ;.,I)suh)f0 vMu0g

O
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44

3-

Tw 2_

• possible force

vector locations

(normalized thrust traits)

°o ..... o '
F,, Fy

Figure 2.1,5:Possible Force Vectors after Symmetric Transformat£on

With _IIthruster#equal strength,and a georaetricallys._m_,triclayout,the 65

candidate thrust vectors Can be reduced to 1_ through _.vmmetric tranfformarion.
This simplifies th_ search, allowing it to run in re;d time (thJs siml>lilieat_on is zmt
pnx:_ible when t_Jrus_.er failure:_ occur).

of the vector components, and ,;wa.pp_ngthe.x and y compuaeats ifnecessary,Then this

vectori.,;ccJmpared _o e_ch of the 11 pi-olotype_,resultlr.gin l].costs(pe.rhapS_a.weighted

cost functionincolv_nggas usage attdforceerror},one for._mcl_or the ]'.icandidates.TJ_c

candidate corresponding to the mizfimum cost is selc, cted ;_ the optimum. The thruster

pgtte.ra associated with this tandid,tte is t.he_-tra,t:sformed to undo the_yf, tmetric tran_.fof

m ati,)Ixs,bringiB_:the forcev,_ct,3r10 the,correctIc_callot_i_tth,.,fulllhrce.c.ompottetatforc_

space.The re_;ultin&thrusterpatternisi:_p]_n_c,_tedon lhL,robol,

l{¢d_ction of the s_.arch .space fi-u_n 256 candidatet; i_t the ge_eral ca_.e to 11.itt the fuLly

symr.aettic case is critical 1.o allowing the dtruster mapper to rue it: teal time. The. _.mCLUnt

uf COZapUt¢.tiOR reqtdred to transform the, i",_. v_,ctor into 1.his h_df-octant, search _vc¢ 1 [

v_.ctors,a_,Jthei_ttgnsfonnti_eminimtmFcost 1/v0ctof back tothe one c_rr_,sp,-_ndi_.;to-th,2

full ,%space i,iput, theB prudence th,: 2" vc.ctor, is signific,_,titly 1,,._ th,n if t},,,._,? symmt'tric.q

W,-_fe-igl'oi'i'd itlid tl,e._:a_,:h iBd.lud_d '2._Gpatt,_rns.
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Difficulties in Extending ']:his Method .

Fern free, flying rgbot operating in three dimensions, the number of possible thruster combi-

a#.ioas lacreases greatly .(for example, with 24 on-off ehrusters, there ar_224 --- 16,777,216

combinatior_s). This is partitLlly offset, due to the number of.syrntaetries also increasing

{for a fully symmetric 3.1) robot with 24 thrusters, there are 4ti9 coa_.bltxations that would

need to be .,_arched :fftt.r complete :_ymmetri¢ reduction -- a significant reducti0a, but still

comptltationaUy dem&nding3).

Unfortunately, geometrk symmetries ma.y not exist, due go other spa¢:ecraft design con-

straints, or due to unanticipated thruster failares. ].a _,his ta_e, the: full number of thruster

combinations would need _:o be searched to obtain the optim,_l _olutJoxl. This situation

mofivate_._ the use of a neural ne_,work for the thruster-mapping component: ]t is u_ed _o

impletnent a nonli:lear approxims.tion to _]le optim_] solution that ear_ be: computed in real

time.

Art alternative to developing _ neural v.etwork to produce a function that approximates

the resul _. of the opt!real search, is to use a. sub-optimal search that can run ia the time

constraints imposed by the appllcat.ion. A simple example would be to limit the possible

combinations to two thrusters firing .at a tim_. In this case, only 24.23/2 (2 thrusters) + 24

(1 thruster) + 1 (no thrusters) = 30I combinations w ouJd need to be searched at each sample

period. While this may make the problem tractable, mapping performance will be reduced

drastically. Other sub-optimal searck schemes maw be developed that are mm.e effic]enl, than

th]:_ simple example. One possiblc scheme is pre_nted by Sperduti and Stork in "A Rapid

Gr_tph-ba.sed M:ethod for Arbitrary Transformation Iavariant Pattern. Classification".[53]_

This method-was dewloped f.o:r an Optical Cl_aracter Recognition appllc&tion, highLighting

the fact that this control application i._ fimilar to a paltern classification problem.

Q

2.3.2 Direct ?.'raining of a Neural.Network Thruster Mapper

The: search method described above defines the optimal _.olution to the thruster mapping

probleti_. The next two methods are neural network approxhaations to this optjtt,al solution.

Since they a_:_ approxhaatioas, they will hc sub-optimal, but gait be d_signed to run i_ teal

time.

nAn algorithm to atltomate d¢:ti',',ttion of.tlu_ _ymmettic tr&_sformatio_ function_ ltlv_ beett dt_elulwd b L.

Kurt Ziftmictm._II tnd Brittn Kcmper at the Stant_ord Aerospace Ho)iotir-s Labotatt,rtL
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In the second method, ,DIRECT T.RAINING, a neural network is trained to emulate

the op_timM mapping produced by the exhaustive search [71]. 2'he network Js .repeatedly

shown sew:ra] desired force vectors.along with the.optimal thruster pattern chosen by the

search algorithm. The weights in the network are adapted using backpropagation to make

the network outputs match those produced by the search aJg.orithm (the optimal solution),

This DIRECT TR.4ININO appro:tch is useful primarily in that it allows the study of

network arehitcx ture and _opology issues before tackling the additional problems that come

with indirect learning, iIence it serves a.s a stepping stone to the gem of indirect le;_rning.

The approach also ha_ potential advantages beyond that of an intermediate step. In

particular, using aneural network as a function emulator may" increase computaliona] speed

and .,_ysl:em robu,_tness very significantly duc to the distributed, parallel nature of the com-

p utation.

Tireinvestigationofthe network topology issuesassociatedwith thisDIRECT TRAIN.

I_YG approacllled to the _'_IlyConnected Architecture,presentedia Section3. The FCA

can a.lso.he.used_withthe indirecttrainingmethod describedbelow.

e

2,3,3 Indirect .Training of a Neural-Network Thruster Mapper

Once the topology issueshave been investigatedduring the directtrainingexercise,the

network ar,.hitectureCaR be chosen.The topology ofthe,network (i.e.the _umher of neu.

rollS._nd .theirinterconnections)definesthe _'unctionalcomp!e.xJtycapacityof.thenetwork,.

whether itistraineddirectlyor indiJrectly..With the architecturealreadyselectedto provide

the requiredmapping accuracy,the next step istofocus on the.trainlngmethods.

In the third.method, INL IR£C7' TIL41NING, a rtel_raI network is trained to find the

optintal solutiolt when presented with a model of the plant, but no optimal teacher, "].hL;

required back-propagation of error through the discretd-valued thrusters which in turrt

moth'atcd development of th,._ noise injo.etion rctetttod to be presented in Chapter 5. "]?hi.,;

strtte_:ure, shown in t he top part of I."igure 2,1.3, reveah that the thruster m_pper is forming

an iaver,_e of the thrustt_r model. Using a neural network to ]_earn a plant inverse, and u_,ing _

this inverse in the forward control loop, i,_ a ¢onllllOlt approach for neuralq_etwork vent rol,

As wi.ll be discussed later, the presence of non.differentiabl_: hard limiters coll.iplJ.cal.es the

de.veh)pment of this hwerso. _
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With this form of training.made posslble, the neural network control systeln is a.ble

to reconfigure itself qu!cklE in response .to even drastic changes ia thruster characteristics.

There is no.longer a need to develop tile search algorithm as at, optimal teacher.

When evaluatiug mapping performance, the search method represents a lower bound,

since it defines the optima[ solution. Direct-training performance will be used as a bench-

mark fez comparison wlth indirect training, since it represents the lower bound defined by

the finite mapping complexity available with the chos_,n networ]_ topology.

2,4 Summary

The control applicati.on chosen to study 11eural-network contl'ol |s reconflgurable thruster

control o,f a free-flying space robot prototype, a capabi}.ity compelled by major failures

in the robot's thrusters. Th_s chapter has described _he experimenta] equipment used,

the thru,,;ter mapl._ing problem that is at, the center of _,his.c<_ntrol _pplic,.tion, and _he

appro.'_ch taken to,wards solution of th_ thruster mapping problem (*.hat inclu.de.s the use

of three separate soIu_.ioa methods in building towards the final implementation). The

remainder of this thesis develops _ complete solution to this col_trol problem, and presents

adva,nces in neural-network theory :made to addre,,_s this specific problem _ncL the l:ather

bread generi.c range of important xe_',l.wor]d con_:rolproblo, ms that it ;represents.

O
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Chapter 3

Control System Ow rview

I
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0
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This chapter prcsent,u aL:.overview of the recorlfigurahle control system developed for the ap-

plication described in Chapter 2. This is a ¢oraplex <:ontro_ system, involving tlle integration

of several component.s*. As menti_oaed in Chapter 1, often the most importan% and some-

times the mos_; difficult aspects of a neural<_etwork control, application are the decisions

abvu.t how to structure 1;he control system and which compo_en_s are to l)+eneural-net:work-

ba._ed.

Specific$.,]ly.. _l_e first issue is to deterndne: whether the application is ore where neural

ae6w0rks can contribute cfliciont]y better (and chea.per) control than_is uc]}icvabh: without

them. If they can, the second issue is t,) determine the optimal sy._tem arch]te.cturc, [.hat is

to determine in just which segm,._at{s) of the control .,;y._tem they should be used in order

to do just that at minimal cost. Thi_, is zhe essenc_ of astute lLvbrid co_atrol, a _entral

contribution of this research.

Inaddition to pre_entir,_g the sy,_.tem-Jev0..1zontrol sy3_em desig.'.n, the rea,_ons for ch¢o. _--

;n #.;tl_is :_tructure are given. While this l,articular _tx.ucture dot_s Tlot_r_epi'esent a gctloral

ar(hi(ect||re for de_,'eloping aeural-n_,twork control :_ys_ems, the new m_,t hodolog b that led

to this-structure is tieneral, and can be applied to tile development of a whle variet_ of

neural-network control_yst¢_.s and ne'arai m:twoPk appli|:ation:: in general.

While this chapter discusse_ the o_'0ralJ control system and de+ig_l ,:onsid,._ratioas, Chap-

tel+ ,t and 5 provide in-depth di._¢u:.sion cf the- :_pe,:ifi<: neural-network i:_su,.+svncourtter(_d,

attd Chal_tet 6 pro,rides ;t mor_, detai'.ed disctt._sim_.of ea(:h of th¢ ,;oltt rol.sy.q(.m ,:onlpo!h_lffS.

- " ...... i ...........mmmml
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3.1 Control Sys.tem Structure

Figure 3.I shows the o_era]lsystem block diagram. The additionsmade here beyond the

controlsystem presentedin Figure2.12 includea userinterfaceand alladaptNt_ ca.pablUty.

Ttlese segments will be discussed, in detail in Chapter 6. This chapter focusscs on the

._yslem-level design considerations.

]'he objective is .to con{roI the position and attitude of _he robot basc, while subject

lo multiple, large, possibly-destabilizing changes in thruster characteristics. ]'he plant is

linear and well-mc,delled, except for the actuators, which are on-off thrusters flint could

have altered characteristics. A.n _¢curate vigon system provides high.bandwidth position

feedback, which is then digitaJly filtered and differentiated to pros-ide velocity. On.board

accelcrometers _nd an angular-ra_e sensor are used to provide base.acceleration measure-

Int_tlts.

Adaptive System i

I TrajectO.k'y ] , _._ra|n_J robot._._ ...J accet_e.n.nsor_) ,

_,,.G__cnerator_ ; --[-[- model - x,y,.V ._

: .....i.T_..............

X ['_nt2:°l---l_=_ M-_aP2'e-_r(NN-_ _] -_-_--_"-']

Figure 3.1:Reconflgu.rable ContrM System ....Bloel< Diagram

This control system is basedupon _ eonvontiotml indirecl adaptive controller. _uctJ
aa a :_elf.tuning reg_dator, Examples of thv ctmtinuous-valued Fd;_ t.'ectot and
the correspulJding discrete.valued T vector ate shown, Th_ ID bluck zeptes,mt_
a rccursive-lea_l.#quale_ ident.ff._catian of Iln'u_tet 5trc,ngth and di;'_etiou Thi._
continnally.updated mod,d i,J I,_s,scd to th_ neural network trainitlg l_lock, #hown
in detail in Ftgot_ 5.6. The :ontinunlly.updatod floiJtaJ' O_tu_.tet fnnplWt i.¢copied
periodically into th_ attire control loop

@
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3.L1 Control System Design Considerations .......

Some-cotttrol-system desigrt consideration._.for this application include:

1. The robot is to be controlled bye human user at z.high level, so path plan/.ning/traj/-

eet/-ory gen.eration i,'_required.

'2. Tile robot mu:_t reject dlsturbattces and, at _, low level, be rohu:.t to actuator mad

plant-model inaccuracie,s; so a robust feedback systetn is required.

°

4.

Gas_usage should he minimized where possible.

High-performance control is desired. The requirement._ f,ar a fi'ee-ttying space robot

ate different, front those for.a shnple satelllt,._ control system. A robot is expected

to carry ottt multiple.degree-of-freedom trajectory tracking with high control baud-

width. Satellites tend to spettd their time regu.la,ting attitttde to ,_ fixed direction,

or slowly slewing to a new direction. Satellit,., thruster-control systems are.therefor:

usually de-dl_gnedfor togelation perfc_rmance and st:dfility provabillty, at the expense

of trajectory-foUowing performance. For example, a satellite ¢orttrol syst_:m may lool_.

for the largest desired _,orque (roll, p!teh,.or ,_aw), and enforce a one.dimensional

bang-bang control la,w in that degre,: of fr_:cdom otdy 163].

5. A _lon.ad.nptiv,_ conventional control system already 0xJat._.

Temporal i!_mi.o.sIhat iflfiuqhlce the control d0sign i_nchtde:

1. Control barldwitlth is below 1 Hz.

2. Acceptable rol_.ot.bat,c control performance ¢au b0 ohtrfinvd witt_ a ,5 Hz thrus:er.

update rate.

:1. Accel:,rometer bandwidth extend_ frofla 0 Hz to greate_ that_ 500 tlz.

,1. Extraneous vibrations c:d_t frtmi ',iLlHz and _tp.

5. "1htuste.t transient et_'_ctsare _31tthe order uf 311l_h and up.

6. During rocoitfiguration iJ_rt,apons_ to tl_l'u_;ter faihxf0s, st_tbilization is rcquir0d wit hif_

15 s_coitds duo to lin_ito.d table a.rea
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Items. 2-.,5l_,ad to- the s_.qecfion of a thruster-control update rate _f l 0 Hz, but.with a

sensor sample.rate.of 200 Hz. Analog pre_tering, and digital filtering _.re performed.on

this over-salnpled.data to produte cleatl acceleration signals. The tithe limit imposed by

:tern 6 provide_ sufficlen_.t!tme to be.gin, but not neces._arily to finish building a modd of

the system. This.leads to a. design that has the_adaptation turning concurr_z_tly with the

idex_tification _ there is l_ot enough time to wait for fl,._ identiflcation to converl_e.

3.1.2 Indirect Adaptive Control System

Th,se systena characterlstics happen to fit well with a sta_tdard control structure known as

"indirect adaptive control?' This refers to ttt_. use of sensor inf)rmation to build a modal

of the _ystem. and th,_n to r_d,._si_,n:_controller t,as_d _lpon the updated plant model. "].'he

"indirect" here refers to the: it_iermedlale z_tep o,_b_ltlding a model of the ay_t,._tn. This is

the structure sl_,owrtin Figure 3.1.

The user issues d_,stt_.d.position co|tankards to the robot '_'ia a graphical us,r interface.

Th¢, c_rrt:nt and desired position are us0d by a t-rajectoty gt,nerator to calculat_ the pa.th

for the rebel to follow, resulting i, a traject,ary vector, A'_,, consisting of positions and

Veil,cities in the three dc,grd:es of fre._dom at each _ample time. This desir(,d :_talo reeler

in input to a PD (.ontroiler, alonl_ with the actual ._tate ,,'error, which i:. provided by the

ove::head vislon_s_stenl. The Proi_ortional-Derl'vative controller ca_ b0 used due to th_

simplichy of the plaftt.(this is.ba:_icaUy a 1/,s a lda_lt, so fro.integral c,ntrol is _aeeded [8})_

and the availability of a high-fidelity velociLv sisnal. The PD controller, output, F#.._ i_isent

to the.Thrtt_tcr M.apt*or: re:lulling; in t ho thruste_." p_ttt_,rrl T. Thi._ T is theft ifaplemented

on the .robot.

This low-levd 12ottio_ of the tontroi.sy:ae.m, cunsisting of the. trajt',ctoLv got|orittot, _:'ih

¢onttolJer, thrustc::-mapp_._, and positlo,.tc_tsor, i_ o]ways r,,nin_, a_d do_._snot I_,_v_.

adaptive capal_ilit_'. Th_ adeptly0 sy,;toln is higlilightod in Figure 3.1, arid consists of three

¢ofiapoae_ts: si,,s,ra, a_t identifi,'atiotl process, and _t.co_troiler redesig_ pt_ce;_s. 'l'l_e

acc_rletomet#rs .tttd ang,|ar.rate _,en_iorpt,_duce a has, acceleration, me_.suren:tont vcct,r.

These signal:,, along witi_ the Ihrttster f..ring signals, are used by tke ideittificnrir_n ptoc_,ss

_o update a mod_l of the t_bot'_ tllrustor cht,r,_¢'t0|istlcs. TId_ mode] is periodically sef_t

to ;:..ct_f_trol t_d_i_n procd:_._thai _,,,fleiat_,s _tt _tpdat('d thrtl_t(!r mal',p0r based _q_o, th0

updated rob_t jl_odel._l'his ulvlatud thruster :_lappi,r i:; pc,rlodically topi_,d Io I lt_, tl,_uslet

Q
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mapp_.r runrtiilgjn the eoJltrol loop, as indicated by the double arrow_ The control, identi-

fication,.and-controller--tedesign loops are.all running concurrt_tltl_:. Due to the possibility

of a destabilizing failure, there is nc_t enough time to wait to generate _. new updated plant

mod_q befor_ redesigning ._he. controller.

So far, thi:_ structure makes no mention of neural network,_. The factor_ involved in the

dcc:ision of wher_ to u_ neutld networks _tre outlln_:d below, In this application, ,_ rec,r.qve

least squar0_ !,inear regression ID coxr_pol_ent was ttsed, ._ince identification of the thru._ter

ct,.aract,rlstlc:: is a llnear prot:ess, The al_orlthral u._ed to obtain accelerutlon xi_easurement,_

w.as xtonlinoar, but could be derived analyl:ic_lly, so zlo neural network w_s used tl_ere eithei.

A z_÷u_.l network was used f,._r _he thr.ustor.n_apphtg component _inee it is an inscrutable.

ntmlinoar i'uncti_,n that requires ailaptatioll. "['he.control redesign pr_-o:_s is t horoh_re a

backl_ropagation.ba_;ed neur,_l-n_._tworh t rahxlng algorithm.

The tteur_| nc_twork ia used ilrm'isely at the locatiorl wh_re it is ben,!flrial: the thru:ter

mapl_er. If the rt_bot were to retnal, lwrfqrrly _,yn:.metrlc, with no d,_grad,_tion, and it wa_

restricted ,;o in.the.plan0 tnotiun_ with 8 thrusters, the symmetry.assisted :_earch woubl

w,_rk wt,lJ enough, and no neur___ n_,twork would be requ!red at _.. In this applicati,_n, the

benefits of th,: neural _0t'_'otk approach are r_quired otdy if tile s.v_tttttotrie_ are lost a_

adaptation is req_tired.

The selection, of th_s nyatem archi';act are, and the fi_llowh_g d_velVl)metit of a f_o:ural-

n(,_.w,_rk.based rccottflgurable cctlt_ol _ystem present one sp0tiflc e,_.att_ple eta su_,ce.,,sful

app.lJcation of neural net_'orks for control, llowever, the doeisioltt_ oi" h,_w to structure

th_ co_atrol, systenl, aild v,h0t'e _,nd h_w _.o use the; n_?ural ltotwotk _xre mt_re gener.',I: The

lesson,s !.ea_'fte,] d_ring the i:onstrut-tioti of this syst_.n_ niay in fact bo-appJied tt,-atly ,:an,

dldate r_etlr_al-notwo:k _:ontrol applicatioz_, l:br_example, adthough this npplicatlon :unt, ci all

it_dlr,.*ct adaptive, cont.fnl ,,;tr_ctu_e, the i._xethodotc_gy that follog'_; is not r,_strtrtcd ti_ thi_

_rchitect ure,

3.2 Cos /Benefit A tal.y.,;is

'Fo dotcl'mil_o wh_re ti0ural netwnfk:_ e,_i_ t _tttflk, att, elt'ectiv,:ly, ihe col_tro[ systenls el_gi_,vt,r

ntust consi,tof th, stro_,gths of tletlral ttet_sorks (not,linear,.adaptiv_, gortefie, uflstr_lctUt'Cd,

p_rall0liZabl0) as wt!ll ;t_ the co_ts-as._.oeiaird v,'ifh th(,s,: h0neftt_ (di|_cult to ut_d_,r_¢nnd

workit_gs or prow ,! ;d,ility, di:_ig, is itetativ,:, contp_llhtioil;tlly cOil_i_l,,x). :Flit /2ost/h_.l_nfit
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halanc_must be evaluatedon an ap.pUcationby appllcatioabasis..Pirslat the System.level,

th_ s_gtem r(htuirementsand considerationsof degr_e-of-nonlineari.ty,adaptation requh'o--

ments, and computational complexity,etc.,lead toa candidate _v.siemarchitecture,.Then

:itthe component level,thiscost/bdnefita|talyslsisrepeated,leadh_gto the decisionof

wh_t s(_rtof subsystem willbe um|l&t eadt sogm_nt ofthe controlsystem._.

B,.ibr(.evaluatinglhe applicabilJlyofneuralnetworks fora centred(oroilier)application,

itisu:.'efult,3exar_ine,ittmore detail,filesperificcostsand benefitsof neuralnetwori;s:

sincethesearc ,#hatwillbe weigi|edht the design-deci:_o_.

Benefits of Neural Networks

Notdinear - Since neural n,._tworks tend to be deeigned with an iterative gradient

search, th,:y can handl0 nonIht_,at intornal and ex';erna] (e.:g. Lvst0m to be c(mtrolled)

cotnpon0ntS just as easil) as llu.ear on_s.

GOneral - The most common n,._ura(-,etwotk archite,:ture, thr multi.layer percei_tr_nt

(feotforwa, rd tteJ_vork with sigmoidal activation functions) ha._ b0en proven to be ca-

pable.of repr0senttttg all), _'._ll_).O function to an arbitrary d_gr(,_ of accura('y. This

was pr,._se:ate,4 by' |tornik et. el, in "Mrdtilayer l:eedfo:'w_,rd networks ate t_dliversal

app:,t)ximatut's" [19]. This getty.rarity is intpottartt when neural notwr,rh.,, are dry,:l-.

op_,d in stfftv;ar,. _, but al:.o for liatdwar(, iri'_plemento.tion, wher(, th,_ ability to build

rmdfi.purpose iCs is valuable.

i.;nstrutiu¢_d - Unlike a linear mappi||g or Fourier tr;tn_fotm, tller0 is no prb._,q!Oci_t,d

structure-to the Coml)_ttation a uoural network e;_t_ perform. '].'lie structur_ _s dt:vt,I-

oped durLag trainlng as thr, Ii¢,t_ork par.a_/ieter_ are set. definittg tl_,) s+;follgth (or

exi_'_,_o_) of cuimcctiOfi¢ botw_wa IIf_LIIuIIS.

l'ar;dlcliz_tble - Neur, _ I n0iworks are do_ig,aed to be: impleri_en_od i_l. paralld hard-

ware. In .t_,_t applications, Ihey ate devolaped in software..,and' inq_letnented tnl

s,_.fitd.r.at_iputing httrd',vate, :sim:u that pros¢,rir:, a more cofx_'er:iont devr.lol_ntettt elivi-

ronrneet, ,tltd lllO_t-.of the eff, rt L',npent d,.tting the d/esign and de'¢elopntent idta_,¢.

tlnrdwafe httpielhenfatio, then ha_ the I;,r_t_,nttal for vaethUprov0f_vnt:; in t)r_c0ssii_g

throughput. An addttioftal-hetiefit o1"l_3f;flloI hardware i_rtpi0meitt.aiio_ is that the_..

Itetv,:61".¢_ i_..-Vfl,m:_M_at tial l-Ore-_or f;dll_fo. PO_ irXatnOlrL i. a slia(t, application.

........... L
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if cosmic rays were. to destroy a fe_w.xffthe. neurons, it is unlikely that the output

would be significantly affected, .¢iuc,_.the output is determined by contributions f_orrt

thousands or million.,, of. neurons.. Addltionally._ the remaini_,g neuron_ would be abh:

to adapt.to comp_nsat0 for tke damage,
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irl glower execution, and creates..a susceptibility to overfitting (poor generalization).

Fortunately, many nel:work p2uning methods are_a__.ilahle_that eliminate the excess

complexity, bttt this r(:mains mcon_plicating, issue,

Th,., specific costs and benelits x'ary h_.twcen different types of n_,tworks, Fo_' t:xatal!le,

mez,ory-basr.,d ztetworks do not have the it,._rativt: cost t|lenticmed ahoy0, as. they.just store

aLl :,o_,;or infers|natiOn and recall the rdevant informatioz_ who.ll needed. Also, _ome neural ............................

networks may be b_tter than others for a specific problem - for _xample, MLPs v_,. RBPs, •

_,s discus._ed ]n Chapter 1.

3.3 C, riteria For Valuable Application of Neural Networks

Study of these, costs and b_:m,fits, the focussed (experimental) experience with the robot

application, ._nd examination of el heJ: su.cc(,ssful neural.network application._ has led to the

follt_wiug summary, It.i:_.a conci:;e.list of criteria for an application where use of neural

networks will. be: advantaget,us, The application sh_o_ald,be:

Nonlinq:ar -The powe_.ful nonli'near c_tpability of neural n0tworks come,,; at the slgnifi,

cant co_t ¢,f comptlt ati_ma] conlple_'at_, slow convergeac_ sp_ed, arid lack of prr, vabilitv.

If n. advantage will b_: obtained from this capability, it. should be avoided.

Illsc:rutable - Th_ fact that ncural.aietworks prgvid.e a genr:ral no_iliJ_ear functian-.

approximi:.tiott _al_abillty ntakes them particularly valuable for-problolns whet.e-the

Ittmlineatil,y in it_scvutabl._..._.f lht, exact form of ttonl.int,atlt.y is known (e.g.. sift, col

qgadratlc function:,, etc,) it d|ould b0 used explldtl.v;, however', thin.naay not be

practical if thO spe_,d veq,firemt, nt calls for parall_,] hard,care. Fore×ample, if 1_},001_

,sin(.r _ "1-/ii) oPo_afic_ns are ,ceded at a 1 ._.lllz-ni._date rale,.paraU_.,l hardware is re:

quir,,d, and it may not he fcasibl0 to custom de_ign a_ Application-Specil_c ltl_:(_gratod

(!ircuit (ASK!)for 1his appli,:atiott, whera, it t_;V l_e feastbl_r to train a t;oural notwork

chip to emulate thi_; fnnci.lozt.

(possib'ly} Requirll_g Adapiation - Si||cc u0ural netwof|:s arC,gorier_,lly trltitwd itora-

riv01y ba_0d t_pon s,3mo forfii of error l'eedback, tll,:y at0 already _(.,Lup for atlaptntian

to changeg tti tlit, plaht or env_toamettL_Ther_,t'm'0 adaptiv0 capability dan l_e arldi:d

t_tth lifittilna[ effofL, etd_;ti_cilig th0ir applic;,.bility if| adaptive do/tirol silu;tf.i_,:ts.

Q
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OF

• Requiring parallel hardware (processing speed) - Tile availabillty of parallel neural

network hardware.niay make a.aeural, aetwork _.pprordmation to even a. k_own _mn-

linear function (for which paraUel hardware does not exisl and is _ot efficiently [mple-

mente.d ush_g a microprocessor or programmabl_ logic device) highly advantageous,

An understanding of the alternative methods (statistic,,;, linear adaptive control, etc.)

is us,flu] for detet_niniag whether the b_,nefits a neural network can offer outweigh the

costs for each application, It is common to see examples ia the literature of aeur_l network

control ._ystems used where a linear _dap_ive controLler would ha.re been easier to impleme.nt,

and worked hetter. It is also common to see flawed jusiificatloxls for neut,.! control like

"this is a difficult control problem tha_ has not been solved using conventional nmthods_

so we propose to>u.,;e a neural iwtwork, (simply) because neural networks can do th.ings

coavention_d methods ¢.anaot,"

Once. it has been determined that the application can beneil.t fl'om the use of neural

networks, these same principles should be used to determine which segments of the overall

control qys_.em are _,:dv._ntageou_dy implemented a i:.h neural networks-and which are not.

('[his i_ the essence of 1;heoptimM hybrid systenl con,:ept.}

h:.. app[yin.$ these prix!cipl0s to the robot coa tro_ appIicat,ioxl, the coJldus]oa .is thai

a neural n_twork will be beneficial. As mentioned in thc_ pr0vious scctiotL, the ta_k is

to.develop an apprtJximation to the optimal thruster mapping, which can he cah'ulated

optimally,buti_to¢,complJcate(itorun inrealtime.Thisraal)pi1_g.}si.ndeedbotl_highly..

nonlinear a'qd !.nscrutable, aa_.Ldoes require adaptat ion inzesponse *_ocha_ges in the thruste_'

characteristics. I.il_.it,a.tioxts.of lhc ne_ra_ network approach f,_r :_pecd o/' i_0cofdiguration,

a_td trai!tit_g _x'ith the oa.off thr_sters, will b,_ addressed with extensions to aeural network

_,heory in tlL_e _::ea_.
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Chapter 4

Fully-Connected Architecture

I•

A number of issuesare present in the thru:_termap:ping controla.pplicationdi,_cu:_scdin

Chapter 2 that are common t.o1_any ncurM network controlproblems.

• Priorinformationabout the syst:emexists,and it-should be possibleto exploit_his

in_brzaation when gea_ersting the neural network.

• Initia.1 learning speed is important if tlm neural network will. be trained_on-line.

• The neural-network topology (the number and connec'_ivity of neurons) r,.,quired to

achieve an accurate mapping witkout ov_r-fittiag is unknown beforehand.

• SorL:e of the control outputs (thruster values) influence one another (,e.g., directly

uppt)_.ing thru.,.ters Oto_ld never fir,: together).

The most r_iovant of these features for the robot control al!pllc,'.tion.,re, the first._LIld

second ones._ Re¢onfiguring in response.to a desr.abilizing thruster fa!d,lre, placc_ a high

premium on speed of adaptation. "l'h_ afchltccture pre_en_ed here allows immediate imply.

m_._tati,m o1' a linear solution that is cah:ulated using conv÷ntional method._. This provld,,s

a low-perform;race, lnt_ immediately-stable controU.er to use as a startingp.nint ir the ,:l,ti.

m_.zat ion.

Ii:. this chapter, a g0neral v_ural._,etwork architectur,_ that addr_.,._cs thcsc t.ssue_ i.s

suggested. This "F_flly-Coxivmcted Arc}fitectute" is for feedforward fla, lrai t_ctworks timt ran

be train,td asing baekptopagatio,I [46].{6C}], and tef, ers to th_ st:.txctute sholvn in Figure 4.1.

It was fi'est pt'_sented by Wcdms [61'. uttd ildtiatly developed in a cotlifoi context by t,Vi_sovt

and Rock [71]

49
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The extra.¢onnecth'ity 9f 'this azchitecture, which ls unavailable in a, layered network,

allows seamless iategratlon of linear a priori solutions,_communicatioa aiaong input and

output: neur,_ns, _nd greater overall functionality !,ban a. la};ered network, The increase

in parameters, can exacerbate over-fitting problems, and a sy.stematic complexlty-control

melhod is successfully demonstrated that lessens this problem.

Q

I

Layered
Feed-Forward

Network

[ Inputs__Outputs

_uiv_dent "_" sigmolds on outputs of

-- v hidden neurons only

InEgs ........ _........... Outputs

..::__::. -- b0th FCA

and layered

Inputs Outputs

Fully.Cor_nected
Architecture

(FCA)

Piguro 4.1: ]_=ttra.Connection:s Available wit h FCA

7Fhis .genetM feed_rward arr.hitcclure #ub_ull_e._ n:,ot_.fat_ilinr :',ing]e or douMe.
hiddcn-l,_yer architectr.lrv,.;. Here, _he FCA i# shot_ to have-td! the con_ection._
of a single.hidden,layez network, and sonic extras _tsw÷ll, The ae_worl_ 's zieutons
dn? ¢o:Jslder,:d _.o be ordered, be$inni:|$ with the fh'st inpa_t, ending t_qth the last
oatput, _d having bidder1 t_nit_ in between, perhat_ i:ttersperged among input or
output uMts. Note that there, is no lat_gor a ¢onc_,pt of layers. Backpropagation re.
stricts iflt'arrnation flow to one dircctiot_ only, so to get maximum interconnertions,
each neuron takos inputs '?'ram all lower-flumbercd nc uron_ .and .¢e_ids outputs to all
hi_;h_r-tiumbcted ll'.urohs.

Q
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4.1 Background.

6

4}

Q
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Q

In the ]J.ter.ature, the _erm "fully-connected feedforward neural network" usually refers.to

a layered network, with an input layer_ one or more.hidden, layers, and an output l_'er,

"Feedforwa.rd" indicates that signals flow from the input layer, through hidden layers, and

to the output layer in one direction only, which is required by the backpropagation algo.

rithm. "Fully-connected" indicz,tes that every input is connected to every neuron in the

firsthidden layer,and _oon between successivelayers.While thislayeredarchitecturemay

be p_rticuhrlywellsuitedfor.many applicationsand certain.hardwareh_plemcntatlons,_t

more generalstructuremay be able to takes.dwmtage ofthe fullcapabilitiesofferedby the

ba.ckpropagatioa aJgori_hm [46].

h, this work, the term "fully-connected" wiU refer to the ,_tructure shown at the bet.

tom of Figure 4.1. £nstead of. layer,, a. fully-connected network c_.n be considered to have

neurons that Itre ordered, beg!nning with the first inputt ending with the last output, and

having hidden units in between, perhaps interspersed among input or output uaks [61].

Backpropa_ation restricts information flow to one direction only; so, again, to get maxi-

mum interconnections,each neuron takesinputsfrom alllower-numbered neurons aml sends

outputs to allhigher-numbered neurons. Fo; example, the lastoutput neuron takesinputs

from allthe hidden neurons,justa* in a l_ye.redarchitecture;however, itnow alsotakes

inputsfrom_e_tchof the input neurons and preylousoutput neurons,_

The main benefit.isnot that ittnaximizettthe connectlons-to-neuron:_ratio,but instt2ad

that,.when combined with a_,'v_tematic weight-prun.lng procedure, it allows a more flexible

use oflayerlng. There has been a recent trend in using not one but two hidden layers: th_t

FCA i_ a gea.eralizal.ion of that.1 r.end.

In the appllca.tion add_es:ed in thi:_ work, the extra <'onnections are found to be useful

when coupled with a. procedure to control over.fitting. In particular, the 3 × 4 matrix in the

Ul)pe_r right corner of the weight matrix shown in Figure 4.2 provides direct linear informa-

ticm flow from input to output (,dgmoids are used only for the outputs of hidden n_21lrons),

and 1.he 3 "< 3 upper.triangular matrix iP. the lower right corner provides communication

between output*. While these functlons could be p_rovld_d witl, processing compo_tents

in.series or parallel._ith the n__twork, the fidly.connecte_Larchitectur._ provides a seantl0ss

ia_*gration of these _apabiLities.
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4.2 Comparison with a Layered Network

Fig.re 4.2 highlights the benefits of the extra connections that are unused in a single-layered_

_Jetwork.

123 j_ N-IN

" "1
VVVV

Outp.ms

W(i,j} is weight connecting
neuron i to neuron j

[--1 no connection (%q(i,j)-- 0)

[] connectionS in 3-5-4 layered network

[] additional connections wifl_ FCA

(_) Feedthrough weights - direct, linear
connection from input to output

(_ F[exibllity- subsumes one, two,
... hidden layered topologies

(_) Output crosstalk -communication
among outputs

(_) Input ctgsstalk - comm_mication
among inputs

Figure 4,2: Weight-Matrix Representation to Highlight Benefits of FCA

Q

O

O

Feedtl,rough Weights: this segment, shown in region 1 in Figure 4.2_ is a matrix that

implements a direct, linear.connection from inputs to output_ (slgmoids arc used only

oa h idden units). This provides fast initial h'arnin_ and _dlo.ws direct pro.programming

of a linear solution calculated by some other method. Thls is pa.rticularly important.

for control application% where _here is a large body of linear control knowledge that

can be _lrawn upon to provide _. good _tatting point. Tim ]!CA provides for ._earnl_ss

h:,te_;r_t,iou of linear and nonllnear components.

O

Flexibility: since the FCA subsumes any m_m.ber of hidden lay,.sts, when conddncd

wkh a systematic weight-pruning procedure, t.he network tol?ol,)gy (defined by the

rt:mainh_g connections) is _et in a ,,_ystematicmat_ner based on gradient descent. The

weights shown in region 2 of Figure 4,2 tepreselt_ the flexibility of Ihe FCA, in th;tt-

the.co|mections may be configured :o provide one and two-hiddcti layer, topologies (in

general, any feed forward network tnpalogy).

O
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4.2. COMPARISON WITH A LAYERED NETWORK 53

o Crossta]kamong inputsand outputs: theseconnections,shown hl regloas3 and 4 of

Figure 4.2 may be valuable,i.e.one output.may exCileor inhibitanother output,_

featureunavai].a.blewith layerednetworks.

The "disadvantages"(i.e.issueswhich must he.addressed)ofthe FCA include:_

• Incretsedcomplexity:v.umberof weightsincreasesquadraticall.ywith the number of

hidden units, versus linearly for a ).ayered architecture. The extra weights h_crease

su:;celptibility to ever-fitting.

• Slower hardware implementation: updating must be one acutol_ at a time, versus one

layer at a time for layered networks.

This general architecture raakes full ttse of the backpropagation algorithm, while still

aU.owingthe u,_eof modific;_tkms.,such asthe use ofFIR connectionsinplaceofweights[57]

or ba_ckpropagation through time [38], Pigure 4.1 shows the extr_ connections that are

ur:used in a singl,_layered network. The question is whether the benefits of the cnllanced

functionality outweigh the increased computatianal load and susceptibility to o'_er-fitting.

This must be decided for each application. A more detailed .:[escription of each el thes-"

fe_ttures of the FCA foll.ows.

4.2.]. Feedthrough Weights

Fc.r the robot control appllcation, the most important a;spect ._f lhe._e co_tnectlons ]s thal

they providea means lotdirectlypr,.,-p_'ogramminglhe n(:tworkwith a pre.calculaledthreat

solution. Tbls results ia fast reaction to a.destabillzing thruMer failure. Initializing the

network to a good linear solu'tion may result in a better final s,Jlution, as described bcl,aw.

Another benefit i:; that the feedthrough weights make it easy for the network to i|nplement

a ?5nearsolution,so the FCA _,.illwork v,.ellwhen the.actual|solutionhas a :_trong linear

COmlm|_e||t(a common situati.on)supe_posrd with a nonlinearcorrectlon.

Motlvatlo_; . .;'us'ion of'Prior Kn(Jwledse

Much is alrea_iy known about t,ow to find littear approxilnale solutions to 7nany 9toblcms,

buth in ,control, and _,lsea_her_,. Often, the" standard s,)lu_ion is a )tnear one, and. there are

many htghIy advanced, very powerful, line, r desig_ tools ,tvailable. th_wcver, for many real.

world problems, there are sig_lificant mmlinearities, and ofl,._n the fallback ptoceduto i:. ta
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use a linear controller desig3!ed for a.linearized plant. Nonlinear design methods exist, hut

cerl.ainly not at the levd of linear ones..One of the purported, benefits of neural networks

is that they address this problem wlth their adal_five, nonlinear appro.ach [.36]..

Ah.ho,agb. a network often can be trained *:osolve a. problem starting \vH_ no prior in-

formation, taking advantage of the (often abundant) linear theory.can improve the learning

rate and provide _ better solution if properly presented to the _etwork.

Beginning tl_e network ,at a rea_ona.bly-good starting point can lead to a, better_fi_tal

sol,J.tion if it prew':nts th.e network from getting stuck in an unfavorable local minimum.

This can also,be useful as a learning guide. When Nguyen and Widrow trained _hc original

truck backer upper [.'18], the initial leaTning runs were made wlth the truck pointed at,

and a few steps away from the loading dock. After mastering this easy ta.sk, the initial

conditions were made prog_res.,;ively more difficu?.t, leading the control system _.hrough a

gradual learr:ing process. Backpropagation.through-thne traiJfing for unstable systems like

the tntck can benefit greatly frol_a some outside d_rectiort of the learning process. The

teaching process used by Nguyen _nd Widrow, a_.d linear initialization of an FCA network

is another.

In gen_.ral, it is pos._ible to use existing linear control theory to form a linear solu_ ion to a

problem (possibly a liltearized ver_,;ion of a nonlinear problem), In ,._-ny cases, this solution

will in fact be a reasonable solution tc_ the f,ll no_dJneat problem. The feedt]lro]agh portion

of;he weight m'atrix offers a direct w:hlcle _o import and implement this linear solution as

part of the neural l,etwork. SintilaT alternative techniques #:obuilding in knowledge include_

rst training the (l_,.yered) 1_:twork to emulate.t.he linear solution, then adapti_tg from there,

¢.r running the li:aear solution in parallel with the network. One benefit of the I>CA approach

i._ the seamle,,sness of the network-linear solution inte.gra.tioa - it immediately becomes part

Cf the network. Adaptation to this portion of the network cazi be turned off, use the _ante

a.lgQrilhm..as the ro_t oflhe ltetwotk, or use an ada,ptatio.n algorithm ba:_ed on linear theory.

@

@

@

• • _ . 4
Approxtmate Lh:tear Solutmn: Thruster Mapplnl_ Example ...................................................

A ._iritple example of this-situation exist_ here: the exect solu_.iott to the thruster Iamppir.g

probler_t i_ highly nonlinear and cor|ilflex, but ihere is a linear approxlmato solution that may

be easi}y calculated. The fro;dr hrough weights of the fully.committed netv'orlt architecture

simplif._: iilfllsiott of this t_ priori knowledge.

@
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The _Lplqorilineareolutio_tused here was found by-a.ssumingthat the thrustersare

capable of continuous-valuedthrust,output (a linearizedversionof thisproblem). The

solutionissimply a 4 × 3 pseado,inverseofthe 3 x 4 matrix t]tatmaps reactionforces,R

(thesetoffour [-l,0,1_hrustcrs),to baseforces,F. Recognizingthat the dh_ct feedt.hrough

segment ofthe fu]ly-¢onnectednet_:orkprovidesexactlythiscomputation (output= weiglit_

matr!_x)<input.),iti._possibleto-incorporatethisa prwri knowledge by puttingthe pseudo-

inverselinearsolutiondirectlyintotheftsub-matrix,as an initialconditionfearthe)weight

m_trix. This linearma.pper isthen rounded 0ffto the actual thrustpositionspossibleat

run time (-l,Q,l).

The problem ismore complex ifthrusterfailuresare:allowed,and t]t¢one-sidednes._ofthe

thrustersisconsidered.For cxample, the lhtearapproximate solutionmay requestn_gativ,.,

thrustfrom a thruster,which isnot physicaIAyposdb]e (certainlyin spa,ce,and practically

elsewhere).The approach taken here isto find when negativ_ thrustsarc_requested and

attempt to rea.ssignthese_:hrdst,_ to posivively-valuedthrusters.Thi-_isdone exactlywhen

two opposing thrustersexi,¢:t,but isinexactwhen an opposing thrusterdoes not exi._tforeach

thruster. Since this provid,._s cmly the starting point for adaptation, it is not criticaJ that the

linear approxhnate ,,;olutioa is optima]. A solu!io_., that considers one-sided continuously-

valued thrusters is p_resented in [25]. This was developed for the Gravity Probe B safe,to,

which is unique in having proportional thruster:h rather than on-c3ff lhrusters 1.

Approximate Linear Solution: General Case

Alternatively,ifa linearsolutioni_exge,_ed to work well,bu! camtot be found through

analy._is, the tmtworl¢ can _nd one adaptively. This in_olves zeroing all_vt, ighls except th(,

fecdthrough ones, and using the standard backpropagation algoril.hm. At thi.,_..point, with

a linear problem, ccmverget_ce will be very fast, as the co:,t hnction is parabolic (for direct

supervis,)ry training), 'J:hi,q in,crease in ini:ial learning rate caf_ be valuable for cer-tain real.

time appllcaticms., b_th oa start.up, and after a significant ,:hang_ in the system, where il.

is critic_l to find a _table solution very rapidly. Once the system is s_ahiUzed (if this i_,_

possible wivh a linear co_ttroller), the rest of the network can be freed up to deal with the

uoa[inearities.

it is not necessary to z_i'o the ce,_t of the weights when training the. li;aeat r,or_ion

-- th_ linear weights initially leant at a ,much gtealer rate than the, others when all arc

l'l'ht_ S_,t_'llite cM::ie$ Liquid l'_elium tha,. hoil_ i,ff ._[u_Cy a_d.ilitlst b(: expelled an.wvay
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subjected _o the s_mzetrainingalgorithm.This effectJ.sexplained below,and can.be seen

in Figure 4.3,whidt shows connection activationlevelsat variousstagesduring training.

Ifhnplemented on a seriall+rocessor,and speed isan Jss_ze,it_lay be usefulto skipthese

extracom,putationsduring f,he initiallearningphase, sincethey do not ccmtributemuch to

the network performance.

FCA

Network
0 0

.|

Layered.

NetwOrk
020 l0

• 10
, J

1 2 3

Figure 4.3: I'_e_work C_)nnec:tlon Actlv.lty During Training

,_fi_h plots show th_ _ag_Jitude of network cormcctioas (weigl_ts). A _vei_ht nJa tri::
format is u_ed, as in Fi_ur_. 4.2. Fully.c¢|tmected networks are i,_ the top row,Jayered
#zotwork$ ill the bottom tow. Fir,_t plot is 8.fteJ'.25 epochs.. Sec¢,nd plot, top, is a_te_'.
trait_il_gwith th,_.£e,*.dthrough eormcctions froz".n lo the lit)e_tr so/utio_, Seemed plot.
hottotn, i._after training the layered net.work. Third, plot, top axzd bottom, ar_ the
fin al soht,.ior,.¢ (toca.l n_inima'j after all wco;ht.¢ _¢,ereallowed to adapt

e

A weight must contribute significantly to the output before, the r_ultinl_ error sig|_.al will

cause it to change, significantly. If all weights are started :;mall, the feedthrough weights learn

fitstest, sin re the inp_zt and output information provides an lmmedlale err0r-gradient signal.

Ox_ce thes,: signals build up, th(: crosstalk weights recelv_ strong learning _dgttals _tnd begin

t,:_ adapt. Starting all wetghts with an initial condition of zero '.','.iLlallow the fi:edthrough

a_td ctos_talk weights to adapt, but all.other wt.lghts remah, at zero througho,_t the learning
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because-thereqs no error signal du¢_to these weights to stimulate learning. It is .common .

in network training to inltiali_'.e these weights to some random values. Choosing 1;he initink

condition for the _."random" _weights is a problem in itself. The method ptesented/kv Nguyea

and Widr0w [32].has proven to be valuable in thi_ application.

Once the i;_dthrough weights l_ave been found, either analytically or. adapt!vdy, they

c,_n be fi'ozen or _dlowed to adapt, depe_din_ ol_ the problen'_. In the ca_e of _m anal.vtictd

solution, at1 adaptive algorithm distinct from baekpropagation may be appropriate.

4,2.2 Valua_ o,f Cross.-Talk Connections

In addition to th,_.walue of linear f_:ed_:hrough connections, the upper triangular matdce.,;

coxttribute hy providing the capability for crosstalk _.mong oueputs and among irtput_. These

weights _dlow one ou_.put to e×.cit_ or inhibit a hight_r-numbered output. As a clear ex.ample

for the thrust_r mapping probleta, if the network were to h_xvc,an output (0,1) for _rach of

th_ eight thru.,;ters, and during training, _ penalty w_.s put on ga:_ use, lhe network could

us_ this segment to allow the firing of one thruster to prohibit the firing of the opposite

thru_ter {which would provide zero net thrust and waste fuel). This is so clear that in _hit,

ca!_e, it Could perhaps most:easily be impkmented by_manually programmlnf_ the._c weights,

although the.network w,_uld e'¢entually learn thii_ a¢..well. The exaxnple illustrates the va.lue

of crosstalk betwf:en iziput and outpul..neurons that is unavailable, in a layered network.

Az_other example would-be the cap_tbiti_y to _elect betwee_ redundat:t.output p,_.tten_s: if

[1 1 0 0] and [0 0 I 1] both produce the same net force, they'.may both be.equ_t!ly likely

to activate when that force is requ_,sted. Thls could result in either [1 .1 1 1] or [0 0 0 (1].

The ¢ros_talk would allow th,_ t_etwurk to u_e lhe fir,;t t,utput _n se_td it 'o ei_l.ot of the

accept, able .,;oh:.tions, arid avoid the ambiguity.

Cros_.alk between _dl outputs would he nice, but backpropagatlon fimits us to uni.

ditectioztal lnt'ormation.flow, Thi._ may make, it important to select carefully th,._orderiril_ of

input_ and oulp_0.s. I1" nlote complicated, nortlil_,ar cr,_ssi,al_.;is de_fired, extra nt_utor_,_r:_ay

be placed betweort-indivldual output or inpul, nt,urmt_.



58 CIIAPTER 4. F[71.LY.CONNI¢_.TF.I) ARCIII'TECTVJ_E

4.2.3 Hidden-INeuron Interconnections

FCA Generalizes lhe Concept of Hidden Layers

The FCA is _a, geaeraUzaticm of rite fe_dforward layered he1 work. It th.erefore subsumes

layered ne_-_vorks .with any number of hidden layerL i.e. it ha,_ all the functionality of a

rwc, or thret-layered networL This Can be seen in Figure L4, wMch show_ how two and

no connection

(w(ij) = o)
I connections in

layered network

[-] additional connections
in FCA network

Figure 4.4: FCA Subsumes Any Feedforward Layered Network

The FCA i5 sh._wn to include (as aubzets) all the com_eciions avMlnbh_.in tt_o or
three..la)'_ted ne.twork:_, l.o ge.neral, i_ subsumes.any [eedforward i_twork topology.
Tile matrix trpr_senta._io._ here is .eimilar to that in FigUr_ 4.2.

Since the FCA :_ubsumes any nun_ber of hidden-layers, when.combined with a sb,_trmatlc

weight.,.pruning procedure, the.network topology (defined by the remaining t'onnectiotls) ig-

_et in Lsystematic manner base,:[ oft gradient des.zeM. The _i_,ht_; .shown. in region 2

of Figure ,1.2 represent the fle:dhillty" of the ]:CA in that th_ connectiozm tnay be config-

ureM to provide one- a_l_ddden, la_topolc,gies (in g0nt:ral, any feedforwa.rd network

t opolo,D" ) ,

Thlts flexibility is valuable, sln,:e often it is tlct known a priori which IletWo_'k Iopology

is best-suited for 'Ate appli,:atlon. Couplc.d with a systematic network ptunltlg mvthod

(presented b,._h)w), the: I.'CA _[lows for th_ notwo_k t.opolngy _.o he autvtnatica]ly chosen.

One Hidden i,ayer or Two?

The topology of a network ca_t have a ,dgtdficant irnpa.ct oft th,: f_nc*ional_capahilities of

th0 neural network. It is g_2xierally acc0pted that. at least ottl: hidden layer is n0tessary to

m man m m m IIm mlUllll IIIm IlUlll Illl Nlll n llnlnlm n mmm m
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p.erform rnappb_gs that are not.llnearly:separable. However, the deci._;ion to use one hidden

layer., two, or mOre,is a_ active area of research [1] [5] [7] [13]]19] [21] [26] [30] [35] [.41] [49]

[50] [55] [58]. This section present,-some background in this. area._ There_ is no Consensus

ar_ong the re,'_earchers "_ tim-number of hidden layeTs needed appears tO. vary from oat:

appl/¢ation to aaofller. I:brtunately.,.since_the FCA subsumes aft layered networks, this ......

issue is not so critical if the ]:'CA is used with a systematic network pruning algorithm.

In "On the Repre._entat]on of Continuous Function._ of Many Variables by Suporposl-

tion of Continuous Furtctions of One Variable anti Addition," A.N. Kolmogorov pre_ent._

a mathematical proof l_garding the 5metio:_a] complex!ty of neural networks. He shows

that a one-hid.den.lea'or network with 2n-+ 1 hidden neurons (where n is the number.of

inputs), can implement any continuous mapping from n inputs to m ot_tput._ [28]. This i.,_

impo_:tant, since it vrovldes a. mathematical foundation fo_" the fimctional capabllitie:_ of

neural networks, but ther,_, are two difficulties: (1) The nonli:_ear activation functions of

each of the hidden r.eurons is not specific.d; (2) lie .does not show how to find the we ight_;

or nonJ]t|ear functions.

I_. "Mul.tilaye_ feedforward networks are universal approximator_," Kurt tlornlk, M.ax-

well Stlr_chcombe and Halbert White show that any function can be u_iversally approX..

mated to arb]trar._: accuracy using ;_ neural network with. oltly on_ hidden layer_t19!. Thl.q

requh'es that the network has "suffi,:ient, ldd.dell unit:;, but no method for deterndaing the

number of hidden unit.,; is given. Additionally, there may be ca,_es.where a _tetwork with

amre than one.hidden layer can implement the mapphtg mote efflde]_tly (.using fewer v'eu:

tons _iad connections, although more layers), Thi:_ ismore applivable than Kohnogorov's

work, ei_ce the authors worked with standard ._igrno]dal t]onlinear activation functions.

In "Feedba.ck st_._biLiza_iOn using two-hidden-layer ltets'" [50.], E.]). So,.tag shows that--

while single.-hldden-layer networks may be suffici0nt to impl_eraent direct input.output map:

ph_gs, doahle-hidderMM0er-aetworks are .req_tired (to. guarantee tha.t-.i,_ will.work in the

general case) to implemef_t one.sided ]nw_.rse._ of c0nthmou:_ mappings. '].'his is especiafly

iuiportant in centre[ p.mbl(,ms, where it is common to invert a plant model. Th]_ is the case

in thi: lhru_ter m_.pping, wh_re the thruster mapper is an inverse of the thruster-to-force

mapping defamed by the thruster parameters.

lt_ "Why two hidden layers are bett_r thati ono" [9}, D.I,. Che:_ter p_escnts an exaw.l,te

where a sitaple two-hldder,-le.yer networl_ i$ sufficien*,, but-an infinite numh,._r of hidden _

n_ttrons would hc requieed if a single hlddea layer _'e_e u._0d,
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$

In "Threshold circuitsofbounded dep.th"[_5],A. Hzjnal.pr.esentsproblems requiringan

experientialnumber afnodes ina slngle-hiddemla.yernetwork, but _,polynomial numbo.rof......................................

nodes h_a double,hidden-layer,net_'ork. _

As far.asusing one or two hidden l,_yersfor.speciflcapplications,differentresearchers •

haw found success,with both architectures.In [21]and [30],networks with one hidden

laverare found to_j_gfformbetterthan thosewith two.hidden ]ayers,ln [26],[41],and [55],

networks with two or more hidden layersare found to perform better.

Sincethe decisionto use one or two hidden layersissimply not an issuewith the FCA, •

the lackof consensuscn thisis:*ueissot a major concern.

4.2.4 Learning Performance: FCA vs. Layered

Figure4.5 compares learninghistories(thrustermapping erroron the trainingset)f_rthe

dlrustermapping problem (with directtraining)outlinediltChapter 2.Three networks are

compared, e_.chwith 5 hidden.neuter,s. Each was trained_toemulate the opl.lm-_lmapping

(minimizing force error}. "lYaining a _,eural network is an iterativc nonlinear vptimiz_.tion,

and will u:umlly produce a different reqult cach time it is run., provided with a differem iaitial

condition.Forthisreason,re.sultsare presentedas the average ofseveralruns.,each from

a differentitfitialconditionofthe weights. In thl._plot,each curve in the figurerepresents

the averageperforman.cefor ten differentsetsofinitialweights.

This i_ the directtrainhtgproblem mentioned,in Ch_pt.er 2. Even though indirect

training is the ulti,rt, at_. objective, in order to- demonstrate the perform_mcc of the FCA,

the direct.training problem Js s_;udied here first. Direct ttaifdvg is much simpler, whik, still

cot_taining _'. of the architecture i_3su,._sto he fmmd. in t he indirect trainingproblem.

Los,king at the initial learning p_rformance, the FCA netgork p_erform_ better than

the laycn:d network, due to the weight gtadlent beingjnstantly availabh via. the direct

contlecJ.ion of hip_.s tO outputs. As-expected, the leCA.network-with the. a priori l_near

solution built in prgvides the. best early performance, Although the randomly-ltdtJalized

n_tworks catch up fairly quickly here, tb.is initial head-start can be critical for a control

application because it can rneaa the ¢lil_eteace between ,_tabilJty and instability, This will

be demon:_tra.ted later, it, Chapter O.

lti the lniddle region, between 100 and 1000 opachs_ the lay0red network performttnce

_tarpas_es that of the ['CA, due to the redttc_d number of para.nteters, and simplified search

space, However° aft_:r lO00 ef_oHts, the gl'eal:er l"iln_:tion,_lity of the FCA network COllie. _. iflto

@

@

@
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4.2, COMPARISON WITII A LAYERED NETWORK

10°
_'-,, - - - Layered, random i.c.

", _ FCA, random i.c.%

"x__ - "',, . FCA, a priori info

10"I __
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Figure 4.5: '/.'raining Perfornaarace @omlatu:i_oa

The fu,_ly-,:onnected network (FCA) learns much {aster at/irst, due _¢o the linear
com_ections. After the ini,ial surge, the, Javered network p,_sses it duo to _he re-
duced numbeJ' uf parameters and.re._ulting faster.learning, Towards the cod, the..
t'uily-c_nne¢_ed network '_ perform.t_ce i.¢ sign;t_cane, ly bett.er .- highlightingi_._ extra

capnbilitie,_. Thi_ is not sulpriMn_. _h_ce the ECA network _ub_umes tlJe function-
aliU',of the layered natwor, t- The lmtwork initi,',lized _ ith the4inear _olutioia begins
with sO,,nific,udly be_ter performance

play, and p_.rformance surpa,L_cs that uf the layered network, This is of cours¢ expected

slnce th_ FCA network ha_ all af the comtectiot,.s of the layered network in addition to tho

ex*.r_t. Ones de,;erib_d earlier. The F'C_L network with the a prwri _,.olution frozen in ha_

t_lJghtly woi se final perforn'_a__¢0, since the f_odtl.tough weights are. ziot adapted itt title ease.

nmJmmml
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4.3 Architecture Selection to Avoid Overfitting

4.3.1 Overfltting

The above has shown the pot(mtiai value of tke extra connections, associated with a fully-

connected n_ural net_'ork,, both in_faster.initial learning _and.in better final perfi)rmance.

llowever, the high number of pars,meters, while increasing functionality, m_kes the network

susceptib_.e to over..fitting. A layered network with i inputs, h hidden neurons, and o outputs

has (i + o)h weight:h while _ fully-connected network has ((i + h + o)(i + h- o- 1)]2) weights,

not coanting bias weights. :More parameters to adapt means the networ_ will be 4ower to

train,and possiblysusceptibleto overfitting.This isan important concern with the FCA,

and mast he addressed.

A coramcm method forevaluatingthe levelof overfittingisto use a method known as

"cross.validation."In thl.qrnethod,_.setofinput-outputdata (known as the "testset")is

kept separate from the setof data used.for tJralningthe network (known a_',the "training

set").Pe_iodicaUy.,the network'sperformano_.oa the testset isevaluated.A decreasein

test-setperformam'e coupled w'ithan increasein training-setperformance indicate:;overfit-

ring.At thi,,,point,the weightsin the network have begun to adapt tothe particularsof

the trainingset (e.g.Jaolseor lack ofsufficientdata),rathet.¢hanforming a gcner.'dization

of the full population from which the: training samples are chosen.

Figttre 4.ff sho_ how (n'crfittlng affects performance for different trabdng set sizf:s.

Ovcrfit_ing becomes cleat when the perforEnance on the test set remai2:$ the same or wors-

ens, while performance on the training set.lmproves.-It is common that duriz_g training,

performance on test and training sets wiR improv,._ until a certa,in .poitit i_ _eached when t he

network stops gen_.rMizing, and begins to fit the particular data set. Use of a "sufficientLy-

large" training set ca_t reduce over-fitting problem_, bu[ this may not be practkal due to a

lack of data, or to an adaptation speed requirement that needs a filstc, r solutio_ than this

d at a-inten sire brute-f_)rc,, _pproa(h.

4.3.2 Systematic Complexity Control

When training function.based nea'_al aetwor.ks such asthis FCA, the goal is to achieve good

gem'rafizatton by presenting th_ network with a largo number of sltmple input patterns _dong

with the dc,si_ed outputs. The holm is tlmt the p.arameter,,_ that define the flmctionality of

the hcf work will adal)t to fit this trainifig, data. and will then respond ¢orr,.*ctly wh,n

t
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set size = 150

set size = 400

set size ---150

set si_e - 50

0.05

O

0
0 1000 2000 400(I 5000 60(103000

epochs

Figure 4.6: Trait.ring tlis_ory, ..Performance on Test. and .Training Da..ta

Overfitting, a_ sm,.n by the diw,rgenee on trainil_g.and te_t performance, i,.;more of
a probhtm for small training sets.

presented wi.Lh new input _31ttterus. q'he danger of overfil ring arises when tile network has

an exces_ of para:.'aetets to fit: the danger is that _:hese parameters wiU be used to fit the

iLoise in the data attd lead to poor _.eaeralJzatlon.

It is _enetally accep_,ed that the fewer paratrtetels ased ia the model, the less chance of

exces,,_ functionality beir_g used to fit noise, tesuP.ing in better geaeralization. The task z_mv

is to find out which conuectio_s are requited to impleme_t the desired mapping, and build

a r_etwork using ordy those weights. The network _rchitecture _electioa could be performed

me.nu_lly, but this would not be' pr_ct!qeal, For.this problem, _. notwotk with fe_dtllrough

coaneeticms, w,fight_ ¢otrespoiiding to a layer0d network '_qt.h_flve hidde_ neurons, and the
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crosstalk connections on the outputs, would probably work well and ,_ot be susceptible to

overfltting, given a good training set.

This heuristic approach may overlook some valuable extra connections, and may still

remLlt in.overfitting, so a systematic netw6rk..prunh_g technique is desired. One _hat was

found to be successful invoh'es a modificatk>n of the cost function that the neural.network is

trained to minimize. 'rids approach was first pr.oposed by Rumelhart and Welgend [44] [59].

The Cost function is augmented with a term that places a co,'_t on the Complexity of the

_mural network (comple)dty is defined by a mathematical function of the weight values).

The neural taetwork Js then trained to minimize this new cost function, using the same

gradient-based optimization methods as before.

This comphxity-conttol structure is based on the following a,ssumptions:

1. "]7he best genera_zatioa is the least-complex one tha,t still performs an input-output

mappb_g with an acceptable error. Therefore, there i_ a user-defined, parameter to

determine this bal_.nce betwemt complexity and mapping performance.

2. The complexityofa mapping isrelatedtothe number ofconnectionsbetween xmu.rons.

Therefore,thecostassocia'_edwith each connec_iolliszerowhen the connectioniszero,

monotonically increasesas the weight nl.agnitudeincreases,the, plateau,|at:a large

weight level. This way, the total complexity.cost varies with _he number of Jmn-zero

welght_, rather than with the size of the weights. The relatively-small weight._ will be

reduced towards zero, leaving the larger (at,d supposedly useful), one._ unresl!r_dned.

The, comple:city, control term is shown in Equation 4.1, and pres,mt_.d graph_cally in

Figure 4.7.

(4.1)

W[t('fe_

Q

Q

Q

ql

J¢_,,_;_t¢._:it_ = complexity cost

i -- mimber of neuron w],cre connection originates

j = number of lteuto_ where connection termhlates

o

_=_=mmmi_Wammmmmmmmm_immmmmm|u I
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o.4 .......i.......! !!ii ii
.o.,...........i.......!...... ;......i.......i........;........i........

-5 -4 -3 -2 -I 0 I 2 3 4 5
_calcdw_'ightvalue[W(i,jy.O]

Figure4.7:CompleMty-Co_It Function

Weights having valu_ heal' zero cost Jittle. Weigl2_s _vith high v_)ue$ (indicating
thattheycontributesigaificantlytothenetwork'sfimc_iou)cos_A,bu_ thegradie1,_
is_s_nal;_ so there is ]ittre inc_nth,e to de.crea._ethem. W'eigl_t_ near tt3e inflection
point are small (they do nr_t significantly affect network p_rFormaace). The slope

•here i_ :dghe_t, _o the network has the mo_t to gain hy dee.re_ing fhem.

N "_ totalnumber of._eurons

u:0 = weight denoting the connection strength J'roni neuromi to xleuron j

u'o = weight normalization parameter

(4.2)

Selecting the ,_cale factor effectively t_ets the cuto_ff point for o.'eights .- i_ determines where

the infl.ection l_.oit_t of the comple.xJty cost fu_.ction occurs. This defines the transition from

a nOarly-paraboJic (for .iv << we) cost surface to one that a,symptotJcally approaches (for

w >> u,o) a. flat surface (ke., with zero gradient). For u, << rye, weights a_e ver_-stror_gly

driven to.zero, wh._re_s for w >> tt00, the gradient is ne,_r zero, and weights axe aot restric*ed

significantly.
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Selecting a high. _0 will .result in a nearly-parabolic cost function that keeps all weights

from growing too large.In 1:hepa;abolicsection,the gr_.dJentactingagainsteach weight is.__.........

roughlyproportionalto the magnitude of.thatweight.

Selectinga low _'owillhave the effectof shuttingoffcompletelysome of the weights,

whilenot affectingthe others.Thls parameter isselectediterativelyby the user.

The complexky-control term isadded to the totalcostfunction__ith_a_w.eightingpa.

ram eteL A, as follows]n Eq||at_on4.3.

where.,

J_o_at= Jpe.rfo?.v_ar,ce _- )% Je#enpfe..i[W (4.3)

Jto'.at

m¢ om plert ty

A

= totalcost functiontohe reduced by gradient-base.doptimization

= network-p_rformance cost function,such as shown in Equation 2.5

= nc_work-comple)dtycostfunction,shown in Equation 4.1

= comple:dty-costweightingparameter

(4.4)

The weighting param._ter,A, i:sset by the user ,)nan application-by-applicationbasis

u)-achh.,vethe desiredbalance between performance optimization(e.g.,thruster_-mapping

pgrformance) a,d complexity m|n]m|zat_on (Le.,_toreduce overfittingproblems.).'rhc pa-

ramctet:can be adjusted itcrativOlyby observing;p_.rformanceon test and trainh_gdata

sets.-suchas 1:hosesho'tvnin Figur(._4.8.

Equations 2.5 4.1 and 4.3 are comblned,.resultJng in the total cost funcfiorl shown in

Equation 4.5.

e

where,

L" , + .....

,=l j'=i+l
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,]total "_ total cost function to_be redttced by gradient-based optimization

_-,,.,(T) = net forc_ error in x-direction, (F;_,.--F_.._,), resulting from T

_,_r('r) = net force error in y-direetlon, (l_d,, - Fw_,), resulting from T

r.,,.fT) = net torque error_about ¢.axis, (r¢,. - r_;.._,), resulting from T

_h,,_,_te_ = normalizing factor for F_.. and Fv.._, force per nominal thruster

rth,._e_ = _ormalizing factor for r¢.,._, torque per nominal thruster

Jr, T2 rT

k = thru:ster number . •

,_ = Complexity-cost weishting parameter

i = n_mber of neuron wh_re connection originates

j = number of neuro_ where cormectioll termina.tes

N = total number of:_euron._

tvij = weight denoting _.he co_neetion strength from zteu.con i to neuron j

iv0 = w,._ight zlorrnalization parameter

(q,G)

The benefits of this method may h(: st,:en in the training histories shown itt Figu r(: ,1.8.

The networl_ had live hidden neurons; a,ad without any sort of complexity reduction, overfit-

ring is clearly a probi(:m, given _he reduced training ,,_et, With the additiorL of the cc_mr)lexJty

term, overfil:ting was controlled, resulting in ,:omparable performance on test and trainlng

sets.

Th.e t:omplexi_y <o_ttol functio_ and training bislories for a fully-c,m_ue_:ted network

with fi. hidden :aeuro:,s are plotted in Figure 4,8. Without complg:dty control, over._tting

beco_i_e,_ clear at around the 4000th epoch, as the perferrhan(:e on the test _et worsens.

while performance on the trair.ing _et imptove_, With the addition of the complexity teIm,

over-fitting is controlled, as p._flotmaace hi:,turies on test wad training sets no lot_get tti _:ergo

4.:J,.3 Other Conaplexity-Control Methods

Many syste_,latir. ,etwork.l: runing v..chniqncs have h_0il l:,ropos,_d ._nd u,,_:d stwt(,_,sfl:liy in

cer_ ain alq_l.ca..t.iof.*s_'.Fot,,:'.;ampl,, "weight dc,:ay'" uses a ¢:o_1.function lik(_ ).(w_) t_) _ry t,
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Figure 4:.8: Complexi_;y Coat Reduces Overflttlng

In the c,_e with no complexity coat.re1, the divergence of netwotk performance on
the test and _ai.t_ing _etsindicate_ over_tting. Addition of .a complexity cost term -
is successful J'n coJJ_J'olli_ overi_ttiug. Although trairring performance is wotaened,
per.fortnance on the test, set is improved, irhich is of centre the desired outcome.

red_v'e all the _'eighl e [39][40]. ()thet methods (:omi_h,tely dimina:e (.onaectio/_ or _,eu.roz_,_

irt art it_t_tive pr,)cdss [481 or wit It a genet.lc algorithm (65]. A survey of pruning inerhods i_

ptesez_ted iu {42]. The my! hod u,_ed here ha_ been _hown to be effective in thhl applicatiov,

but Qther Llethod_ tll_y w,_r.k as.wgll or bt,ttt_r _tt improving gen_.ralJi'ation performm,re.

II

Q

o

,t.3.4 Automatie_rowing of the Network

The above-mentioned ¢oltqJle_ty col,ire] m,'!hod works by selecting a rtetwork tUl)O],Jg2,.

a_d t|te_ trlmjt,ihg l}le ,,X,'P.S_trainer.tit,he to arhiov¢, the (lesifed COli_plegity. An allt,||,ativ,,

o
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is to. begin with .a srnalLnetwork,.and add neurons to achieve the desired functionality. 0he

advantage of.growing a network is the pote.ntial for an. increase in learning sp_._d..With _

fewer hidden neurons, very quick learning takes p].ace since fewer computations are x,:qnlred

(this would, not be true for.a par_Uel hardware implementation,, but is_true .for the more

comnaon serial, imp_.menta.tio_). Additionaly, fewer tralning_patterns o,_ required.. (to a,,,oid

overfittiag), further reducing the m_mber of computations.required during training.

Growing the network is not a new concept, it i.,. similar to the Cascade Correlation net-

work proposed by Scott Fa2flman, in which the network is grown one neuron at a time [ll].

This ha-'_ been found to h_ve benefits beyond the reduclion irL required comlmtation: re-

duction of the "mo','ing-target" problem 2, and reduction of _usceptibility to gettlng stuck

in local minima, The network adapl s until perf0tmtmce asymptotically approaches an opti-

mum; then a neuron is added. These extra degrees of freedom are often sufficient to break

the network out of a. local mirdmum. In Cascade Corre|a_ion, lhe previous .bidden neurov.

weights are frozen while the weights for the ne_' neuron are adapted. 'this _impUfication

of the search space reduces the movir.g.target problem, It can reduce computation if batch

tra,ining is used, e.nd the p_eviou_ly-caiculated neuron activations are stored iu memory.

In_the r.eal-time implern.entation required for the robot-control application, the network

is _rown automatically, ttegin_ng with a small zmmber of hidden1 nellrorts _nd a _m_,ll

training ,'_et, the/nititd h:arning rate is high. As network p_:rformance plateaus (measured by

a sust_ned cessation of improvement in test set performs, nee), hidden neurons are added, a

small batch.at a time. As tile _mmber of hidden n:euroa_ !ncreases, the network performauce

appro._ches optira,_lity, but .at the exp_ase ¢_f slower trailfing. This approach fits v.'el! with.

_,],,_.cc,nt_:ol application, since rapid stab]l]zat]o1_ and coarse optirni:_ation are hnporfax,t,

while rapid attalna._._a of ne,_r-optimal control i,_ not so critical.

4.'i $ulrnmary of Implementation I,,_sues for the FCA

The above has outlined _he {eatures of the new FCA developed i,a the presmfl r_,s_afch, and

of a m,mher of i._._ues in using i_ effectively. The _pe.'.iCtc u:_ of comple;,,ity control, network

gtowl||g, and the extl*a (onaecfim_s ,_ffered by the FCA, will vary _ro_i one application to

another. The irnplt_n_,.sfltaticm issues fo_ the tobol_control applicatit,n ate 0uilined h(_,re.

_"Ihi_ t,_{,,r, to thp _.:igh_ chan[ing dite.c_hms a]_rl bacl-'-tSackih$ ghtt,ugl,,mt the training whi_e l}ie
network approaches a finc.l _c.luli_m. While:_.hi_is not fi¢c,'ssa_il._I_ad,i! can II¢,_ dow_ h.arni]_&

mmm
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, The FCA.'s feedthrough wdg.hhts arc the most impo.rtant feature, as they.provide

tiear-immedlate stabilization_ Some implementation requirements, such as the use

of pamUel hardware, or the use.of sohware_ptirrdzed for veaor-p.rocessing on a serial

computer,+can, place a. high cost on the use of hidden layer interconnections. In such

_:cage, these connections may need t_.obe elimln_ted,

• The use of automatic growiitg has been found to pro.duce a significant improvement in

initial learning rate. Since tim added coding requirements are minimal, this technique

should be used whenever there_lsa.requ!rement for fast inkial learz_ing.

, Complexitycontrolissimpletoimplement,and has beenshown toreduceoverfitting

problems,so itsuse:isrecommended.

Marry modifications to b;_ckpropagation tha.t claim to improve learning speed have been

proposed in the literature. Backpropagation is an algorithm for efficiently calculating the

derivatives of the weight_ with respect to a cost function in a neural network. Once this

gradier t e_tiraate is obtained, any of '..he several e:dsting gradient-based optinfization meth-

ods may be used. Some a]gori+,hms specific to neural netwoiks have been.developed that

attempt to take advantage of some features _peclfic to neural.network optimization.

The simplest implent+.ntMion mu]tit,lies .this gradient estimate by a fixed parameW.r

to calCulal_e the change in weights. More complex implementations adapt this learning

rate pa;aamter, or add a. "momentum" tern,,that ._;ums l)asi: gradient e_timales to filter

out hig.bfieq!£ency noise and integgate low frequency t!ends. -Sever;d other m(,thods, ._uch

a_ conjugate gradient, Levenb_rg, Marquardt, Quj.ekprop, and other second-order graxlient

optimi2ation ,,chem,._s have proven successful i_ certain applications. However, the benefits

of each algorithm appear to be somewhat apple.curio|t-dependent+

For the robot-central applicatioll, b_.tch-learring: adaptation.of.the Jearnir,.grar_ (in.

this case,-_.mat+rix of indep,._ndelll learning Rarametcr,,+ is used.- ad,_pt_d independently

for each weight), arid use of n:ome,ttmL alc: u.,;cd to a,'relvralr h,;_fning. For the thruster

m appi_q_ applical,lo_:, this comblmst km of enhanceme|_ts to backpropagatioa has been fourld

to p_uvide thr lw._l trade-off between _implh:it_ of implen_entath_ and rule of a,_;q_tavi,m.

41
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Chapter-5

Gradient,-Based Optimization for

Discrete Systems

Q_

The previous chaptelr dealt with 4irect.tr_ining_ and led to the development of the xieural-

network architecture used to implement the thruster mapping. To aJlow in¢lirect training,

where the learning signa] (error} i,s generated based on the robot.modo.l_output (rather titan

on an optimal teacher), the error mus_ be backpropagated though the robot model. The

discontinuity introduced by the use: of the robot's on-off thrusters presents a significant

ob:stacle, arm makd_ absolutely necessary the development of tho-zmt_' tra,iring m,ethod

pre,_ented here_ The :_ohttion to.this prohlem is, in turn, a general Mg,orithm for p_:rforming

gradient-based optimization f,r system._ with discrete-valued functions.

The disc:rete.t'alued function:_ did riot cause, a p1:oblem for.direct trainhlg, since in

that case the discrete-values. :_re supplit_d as the:. o_ltput patterns in the training se',_(_:.g.

[1._7.;-0.76 0.11] gets m_.ppod to [0.0 l I 1. 0 0 0]). The fact that the targo.t out;p.uts _re

re_trkted to 1'.,; or O's does fret affect the trairiing. However, for indirect ttaiait_g, the on-off

actuators ar_ tept,_._cnted by disc;,J_t,_.valued ,funetto_l$ tl_a.t at_ u_¢d as iLfolward model in

the ba.ckl_roll_a_ation traitiing.

In this cllapter, a t_ew technique foe bat kpropagation learning for syst,?m:_ with discrete.

val_ed time,ions-is preset-lied, It is applied t, tl_e on-,ff thruster ¢olltto] problem d_.

_crlbed in Section 2_ as we11 as to th_ gentric pt,oblottt n[.!xpjilh_g multi:.layer '._igllUlll tier-

71
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5.1. Problem Statement

Optimlzationm_,_hods that use gradient informal, ion.often converge much fa.ster thamthose .....

that do not.. U_e of the backpropagatlon algorithm [46] [60] to get this g ra,dient information

for training neura_ networks has made them u.ceful in many _pplications; however, back-

propagation:s ;equirement of continuous differentiability, not only for the network itself, but

for anything through which the errorisbackpropagated (e.g.the plantmodel in a control

problem),limit.,;itsappl_cabRity.

This isa significantlinfitationsincethereare many applicationswhere discretewalued

stalesarise. For examplo: on-offthrusterscommonly used in spacecraft(the example

used in thisresearch);other systems with discrete-valuedinputsand outputs; and neural

aet_sorksbuiltwith signums (alsoknown ashard-limitersor lh:avifidestep functions)rather

than slgnmids. Signum nctwork:_may be preferredto s]gmoidM ones due to hardware

con'fideratioas.

In .caseslikethese,one choiceisto use an _.lte.mativ¢method not restrictedto con-

tinuou,_ly-differcntiablefunctions,such as unsupervised[eaxning,simulated anneaLing_or a

ge.netic algorithm; but these are usually significantly slower to train, because they do not

use gra_lient information.

._lso, it iscommon fora problem tobe well-suitedforgradient-basedoptimization,ex-

cept fol:the presenceofdiscrete.vatuedfunctionS.The neural..ne#:workthrustermapping is

a prime example;:a neural netwOrk (differentJable)produces aa output that ]sdiscretizcd

Cwith a non-differeatJahlefunction)and then passed through a model of the robot-thruster

system (differentiable)beforethe performance can bt._eraluatedand used fortraining.Ex-

cept for the DVF, this problem is ;#elhsuited t'or gradien, t-based optimization. Rather than

go to _ completely different solut]on strategy, it L¢ desirable Io introduce _ modification

to gradien_ descent that.wiU accommodate the ac}a-diff(,rexlllable fut_ctions. 'l'h]s sort of a __.

sitae.tio_L is r_tthez ,:onml,m when DVFs are izlvoIved - tit,: DVFs often represent -. small

portion of the overall system, but the problem they p.res¢:nt for gradient.based optlndza tlot_

is fo:'midable.

@

5.2 Related l_.esearch

This problem iS rdat_.d tv a _imilat problem th;,t has teceiv,_.d ,_ome attention _n the fi_l¢l of

m:utal ]l,,twork._: tafiniJig multi ]a_0red .c!tworks ._f har,t-li,fithlg_m,_mms. ]he al#.orithm

O
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pr.esented here.wiU be shown to.be_a,pplicable to this problem. This section p.resents a

histo:rica] background a_d related research_directed towards training signum networks.

5.2.1 History of Neu.ral-Network Training With Smooth Activation Func-

tions

Before the task of training a network bui].t with DVFs i_ examined, it i._ u:;eful to consldez

the history of the feedforward neural nelwork, and why the sigmoid function was chosett in

the first p.huze.

].earning algorltttms for single-layer signum networks date back to 1960, with WLdrow's

ADAL1NE (ADAptive LLRear NE_lron) [67] aild Rosenblatt's Percc: ton [,t3]. U:afortu-

na.tely, _aei1:her of these methods extends directly to multiple la.vers. Minsky's proof of

the fimctioaal limita,tton_ of ,,tingle-layer Perceptrons [32] [33] combined with tld_,; lack of ;t

learning algorithm contributed to a reduction i11interest in neural networks in the 1.970s.

In 1974, Werbos [60J p_esented the backpropagation Mgorithm lot the ftrst time. W.hile

the mathematics of the algorithm may be traced bark to work in 1969 by Brys(>n on optimal

control [6], Werbos developed the algorithm for _ nuraber of applications, including neural

networks built with 8igmo_dal activation functions in the hidden layer. U_rfortunately, _his

work wa-_ largelyunnoticed until its rediscovery and publication by Rumelhart in 1986 [46].

The key ex_.ension that allowed traininlg of networks with hidden la.yers.was the replacement

of the signum with the $igmoid. Tiffs allowed Bryson's work with multist_.ge optin'x]zation for

dynamic .sys_tems to be applied to _,radio.nt.bascd opt].mizatlon with the now.-differentiable

neurons. It is understood that u$¢ of a sigmoM in place of_.sigaum is coatpu.tationany_

more eXp_7_sivc, without providing _ignificant added fimctional complexity: however,, the

use of a function that is t_)ntinuously=differentiable allow:; for the n.pplicalion of tt_.e efficient

gradient-ba.sed optinaiz;_tion methods developed by Bryson.

5.2.2 Neural.Network Training With Discrete..Valued Activation Fune..

tion.,;

MADAI.iNE (Ma.ny ADAptive Llaeai" NEurons) R,flo I was a two-layer network (one htddeTl

layer) that h_{d a traittable first lay.er, but tlW st.cond layer wa,. a fixed logic operation,

bach aS OR, AND, ot MAJ (majority) [18]. In MA1}ALINE Rule II. Winter [74] _l._0d
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a heuristicapproachwhichl,a.dlimitedsuccessat traininga two,layerzletavorkof hard...............

limilers(ADALINEs). The.semethods may be classifiedas "error-correctionrules"r_.tlter

than"_teepest-descentrules"(gracliezlt-based)[67]..

Inrecentresearchairaedat usinggradient-basedlearningformulti-].ayer$ignum net.

works,Bartlettand Downs.J4]useweights.thatarerandon_'ariables,and develop.atraining

algorithmbasedon thefactthattl_eresultingprobabilitydistributioniscontinuouslydif-

fcrenfiable."rh,.algorithmhslimitedtoone hiddenlayer,requiresallinputstobe l or-!_,.....

and needsextracomp,utationtoestimatethegradient.

Anothermethod istoappr¢,ximatethediscrete-valued!Junctionswithlinearfunctionsor.

smoothsigmoidsduringthelearningphase,aJldswitchtothetruediscontinuousfunctions

atrun-time.TldsissimilartOtheoriginalADALINE, wheretheneuronwas trainedon its

linoaroutput:,but in opt_ration,thisoutputp_sed,througha signumfunction[67].This

method may work incaseswhere thebehaviorofthesystemwithsigmoidsiscloseenough

_othatoftilerealsystem;however,_:hisassumptionisveryoftenunreliable.

@

5.3 A New Training Algorithm: Approximation _brith Noi-

sy Sigmoids

The method ofnoiseinjectionisii_troducedby applyingittothetrainingofa _dngleha,*d-

limiting neuron, as shown in Figure 5.1. Although this neuron ccald bc m_ined with the

AIZ%LIIN]'_or p erceptzon learning rifles, those methods do not extend to m_tiple layezs.

The method presented here does not have this significant restriction.

The ill'st block diagram in Figure 5.1 shows the neuron as it appears at run tlm_: a dot

product with h_rd llr_ter. For simpllcity in bookkeeping, the Ini)ut, X, and we]gh_!, |V_ _

vect or:'. are augmented to include the threshold bias-for the output function. The next two

diagrams show.the neuron during tralniag, Where the signum has been 1'eplaced by a smooth

sign.told flmctiom The input,, X, is propagated through the forward sv,eep, finally re._lfifi_g

in aa error, ,_, and a cost. The dcriw_t|ve of this cost i_ calculated and propagated though

tl_e backward sw_p, resulting in a Ocost/OX to be propagated to morn unit.,, upstream,

and a Y)cost/Onet I;o be used in calculating Ocost/0W, which is used in the we_gh_._pdate

al&orithm.

Thisi.salmostthesame astraininga standardneutralw_thbackpro_agalio#_;theorfly

differenc(' in'¢ol_'0s th_ il_jectian of zero-menn noi._e, N, kmmedJalely before the sigmoid.

@
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5.4. INTUITIVE EXPLANATION

RUN '121VIE
X..__(_ net=,XT*W _..Z.y _..

X ,, [1xt x_..., x,]_

W - [b w_ w_... w,,]T

75

B

TRAI_'LNG

Forward Sweep
X _ ÷/._net _ y __ £ _cost

IN" Id

TRAINI_G Lost _ _o.,s.t _ oc_t #.._st _st .

Figure 5.1: Training Algorithm

Du:/ng trainittg, replace discontinuous signums with sismoids, and i_jed nob;e be-
[<)re_hesigmoid c_nche tbrward sweep. The backward sweep calcula_iol, is _hesame
as sta_dard backpropsgation.

While the mechaL_ics of the backward sweep are identical, different weight updates re,;ult

becausethefo_:w_.rds' "eepresultedin_ differenterror,

Note that 1.!,,-_1,..°e injection does not corrupt the calculation c_f0cost/<gW (just as _he

desired.,_ignaldoesnot),Using an unmodifiedb_ckward sweep isnot onlythe simplest

th._ngto do,itdoespreciselythe rightc',flculationsforestimatingtheweightgradient,

What makes thismethodusefuliLsthatasthe:noiselevelincreasestocoverthesig-moid's

transi.tionregion,adap_:ationwifl_..theres'_It.ingOcosc/cgWhads toa setofweightsthat

work well. for the sigmlin network..

"ib summarize, the training algorithm Is:

• Replace the hard-limiters with sigmoid:_ during ,raining

• Inject noise immedhtely bo.tbre the sigmoids on the %rward sweep

• Use the exacts;tmeb_.ckwardsweepas with,,.,taadardbackpropagation

5,4 Intuitive, Explanation

Witho_lt addition of nai._., the network may trait, using sigmr,id ou! l)u_ values il_.the sigmoid

transition _'cgi_,t (roughly •0._ to 0._.;)thal will b_ unavailabh: al ru_1 thlw. Simply rounding
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off.at run.time may introduce sJgnifican_ errors, For example, ill a hypo3hetical .cost surface,

a val,e of 0.4 may be op.timal, but if forced to choose between -1 and 1_ a value of-1 may

be better.

The problem is much more apparent when the DV_ outputs are recombined, such as

wilh the output layer of.a network built with hidden sigaum units, This also occurs when

the robot.thruster physical parameters comb_.ne to.produce a three-eleraem force vector

based upon the binary eight-element thruster vector.

The goal of noise injection is to move neuron activations away from the tra.nsltion region,

so that roun,doff error will be ,small when the discrete-_lued functions are replaced. I'br

this reason: the standard deviation of the noise is chosen to be higher than the width of the

transition re{_ion of the sigmoid.

Figure 5.2 shows how the neuron output distribution changes as the noise _eve] increases:

with no noise, only a siagl_e output can result; but as noise increases _o co.vet most of

the transition region, the output distribution approaches that of a hardJ.imith, g function,

Differe:atiability is m_.intained, however, so that gradient information will be _vaUable to

speed up learning. Since the noise has pushed the distribution to approximate a hard-

limiting nonlinearity, when the hard.limiter is re-ln_:mdttced a_; run-tlme the performance

d.egradafion will be s_aall.

O

@

Q

e

5.5 Application Considerations, Extensions

5.5.1 ,Selection of Noise Level

One concern.is the a_:tenuating effect of the .deriva2i_,e-of-si_.;moid function, Wllvn back-

propagated through many. layers oLnear-_atur_.ted sigmoids, the error Signal is attenuated

a._Mmay leadtoslewlearning,To handlethisproblem,_tmay.be neces,_arytobcgJ'_.du',din

i_tcreasing t he noise level; slowly push the outputs from the linear region to the hard-litLtltS,

r_ther than _ll at once. /_,o¢¢evcr,_.i_tce$,ll the experhneJ_ts presented here had a single layer.

of discontinuity_ no sudt _;radual incr,,use was required.

For trailting ttetworks with _itnph: bi-level si_imoids..once the noise reached a sufficient

level (.roughly 0.5 and 3 in two different appllcatiotts), there was no ctegr,.ad_tthmif it were

increased boyond ttmt level. The only possible dra whack is the attenuation _fl'ect mentioned

,_bove. The requir_,d _oi,.e l,,.veJ wtri_,s i, different, applical_Oms dc,pe_iding upm_ how _;harp

@

@
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5.5. APPLICATION CONSIDERATIONS, EXTENSIONS

SisrnoidInput Distribution Output = sigmoid(lnpu0

°E-T
h .'-5_ ; i , "", .2 o 2 4-

_ _ oNoise = 0.2 .|

•4 -2 0 2 4

Sigmoid OutputDistributiOn

'F-'-'f

°! 0

1 ---- -' s,,,4

•4 .2 0 Z 4 u_ .4 -2 0 2 4 -| 0

-4 .2 0 2 4 -4 -2 0 2 4 .1 0

NoiSe = 3

• £0 "_
-4 -: 0 2 4 .4 -2 0 2 4 - 1 0

e 0L.... -.A -2 0'_- -
-4 ._- 0 2 4 .4 -2 0 2 4 - I 0 I

Siiimoid ]llpu¢ $igmuld Input $1gmoldOUZpul

Figure 5.2: Effect of Noi_e Level on Sigm¢id Output Distribution

LigbHy-shaded regio_ in eolunm J represent_ the ,_igmoid inpu_ peobabi)ity distri-
bution (in this ¢,_se, -0.3 + unifomfly disl;ributed noise). Darkly-shaded z'egion
in column 3 is the _igrt:oid output distributiot_ (fi'om -I to I), Each distribution
ha_.an area o[I. Input and .Output ate plotted together in column 2,to show
how _he _ismoid produces lhi_ inpuboutput, re)ation_hip, A._, noise level iacr_&,_._., .
and the input distribution spt_ad's out, the, sigmoid output approaches t.l_a_ ot'a
hard-limit,'r, whi_e remaining ditTerential,Je.

77

_he decision boandaries wouM be with ;_onoise (i.e.i.f it's a sharp sigmoi_!....b.Lbeg!_t ._ti.t.h_,

aut much ,ois_., i_ needed to force i£off the tr_,sitio_ _egion).

When multi-level sigmoids ate used, as :_een in Figure 5.8, thet(: is an upper limb to

the ltoise level: too much nohe may cause the it_divt(hlal stgmold_ to ova,flap, which in tl,b_

cxa.mpl0, wt)uld blur out the middle level. ']?he specific l_v,fl of noise at v:hich thi,, eft'_ct
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begins depends upon the eh.arpness of the _sigmoids and the discrete values approximated.

In FigL_re 5.8, _'ith a sharpness factor of 4 (sJope at midpoint --- 4)and One unit between

discrete levels (-1,0,1), this effect begins around N _= {L2 and is significant: at around

N-" 0,3. These. va].ues could have been predicted by sketching tL. limits of. the noise-altered

function (the shaded region in Figure 5.8) extd determining at what point the m_ddle region

(input = 0 _. output :--0) becomes affected by the nolse.

The key idea in this atgo.rithra is that the network performance error is linked to round-

off ,._rmr due to use o:f the sigmoid transition region. The goal of the noise injection is to

discourag_ u_seof this transition region. Therefore, :_'hether use is discouraged ils]ng Gaus-

siar_ noise, uniform m_ise (used here), f_xed.leve[ noise, or addlt;ive penalty fuJ_ctions, the

effect is qualitatively the same.

5.5.2 Discrete-Valued Functions Other Than Bi-Level Signums

If adapting a. system that contains discrete-valued functions that are not simple Heaviside

step functions, the method raay work if a. continuously differentiable approximating fun.ction

is used. For example, a function whose output can take on multiple discrete values may be

approximated by combining multiple sigmoid functions. For the thruster :mapplng problem

described in Section 4, the thruster can take on tb.rce states: _'orward, off, oz backward.

Two bi-level (.1,1) sigmoids were summed to produce a trY-level (-1,0,1) _igmoi_l.

In fact, the sigrnoid-based app_roximation may be developed through a supervised _raim

lag techn_que using standard backpropaga_i_n. The limitation intro,luced by the atten-

uation .of. error signals is .again a fi_ctor, aud must be considered when developing the

smooth approximating function. Thi_ can be done by .li_zfiting the.sharpness of the s'tg--

molds ffprogramming by hand. If traini_lg the approximating function, adding a complexity

co_t [59] [71] will keep the weight_,_sma]], and will systematically lhnlt the sharpness.

O
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5.8.a Batch Learning

The ra_domnessJlttroducedwiththeadditionofnoisecouldmake learningslowbecause

of the reductioti in signal-to-nolse ratio in the weight gradient estimatior_. Batch-learnhtg, -

using the exact _ame training set from one epoch to the next worked w_ll (considering

the "trairdn_; set" to include the "i||p|tt set" and "noise set"), l_:eezlng th_ traini1_g f;et

and Iioise set d_fines • fiXed deterministic cost hyp,_t.surfac0.. With a fi_a:d cost functio_i,

O
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on-line tuning of momentum and learning rate cart be applied to impro_:e dramtttica.lly, the

c¢mvergence rate.

5.5.4 Optimization of Discrete-Valued Parameters

Another area where this method ha.s potential is for optimization problems that have dis-

crete valued parameters, .For example, a destgn optimization problem where the task is to

select the right DC motor, pipe diameter, or g(mr ratio from a finite set of discrete-v',dued

options. It is expected that this method will extend well to thi.s family of problems [31].

5.6 Application to Training Multi-Layer Signum Networks

In thi,s sect_,on, this method is shown to extend to mull.iple °layers of hard-limiting units with

no modific_tion. Figure 5.3 summarizes the me_hod: during training, replace each hard-

limiter witlt a. sigraoid and zero-mean independen_ noise source. Note th_.t the sharpness

of the sigmoids does not matter at all here (except for numerical considerations), since the

sharpne;s factor ,_imply multiplh_s the weights, and the weights are adapted.

Run-time Training

Figure 5.3: A Multi-Layer ":;ignum Network, Seen at Run-Tim_: and During Train-

ing

Iv.. th0 f rst test, an-adaptive 3 -- 5 - 4 signum net_vork is traiil.ed to emulate l:he input-.

output mapping de_fined by an ,: dependent, fixed, 3 - l0 - 4 sigrlaoidal network. Fewer

hidden neuron_ are used h_ the adaptive network to en.,ur¢: that overfittlng wilt not introduce

unn_ces,_atycomplicathms. The 3 .-I0 - 4 .network'sfixedw¢:igh_swere randomly chosen

between -2and 2.
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0

Network Performunce .. Average Weight Magnitude

< oI -_"-"-I
o ! 2

Noise.Level NoiseLevel

Neuron Activation Distribution

Noise= 0 Noise= 1 Noise= 2 Noise= 3

• ==otj=oll,.oi
o ,., o,., o 0 ,

Figure _A: Training with Nolsy S_gmoids
Arfifl©ial _Yaining Set

Le'£_: with higher no:se levels, peJ.forrnance on the noisy si_rnoidal network ap.
proache_ that of _he _ignum network, indiea_,in_ that the nois.v ,sigmoid is a _'_id
(and ddTeren_iablet.) approximation fort.he signurn. Right: A6 noise increaseS, the
network adapts to sharpen i_s sismoida, eaue/ng the first l_er weil_hts t.o increase,,
and the .eigmoid output di_tr.ibutions to approach hard-liraiters. Activation distri-
butions were collected over the whole :.rainin_ set, wffh no noise added,

of a Multi-Layer Signum Network,

Perf0fma,nce is shown i_ Figu_:e 6.4. Each dot on the graph represents the final perfof

malice after ;_full trai:ning run (10,000 epochs or until _, local l_ii_imum was flinched]. Seven

values for noise level were chosen, and ten clifl'ere_t network initial conditions were used at

e_ch noisevalue.With no _,oise,.p_rforma_tceis _ood for_he sigmoidd network, but when.

t,he signums are reintroducedattrot-time,tha errorinc_'ea_esdramatically.One pointi_off

the:gra.phat an errorofoyez 6 unlts.As nol._ei_creases,performance on theslgmoidnetwork

dectea._es,asexpected,but the sit,mum-netwotk.performtmceimproves,and approa.chesthe

sigr,noi,:l.network-p,.Lrformance,The weight magnitude and xteuron&ctivatlondlstributJon

plots¢onr_rmthat as noiseincr_ases,the nolsy sigmoids behave likehard-_imiters,Note

that tl_,esd_activationdistributionscotddnot h_.vebeen achieved by manu_dly increasingthe

•;harp!tessof the s_g._oid._:thlsv:ouldhave had zero net efl'ect,sincethe n_twork would_

adapt the. first lay_,t v,'ei_;hts to counl.erac_t ezae.tl_ the sharpness iil¢'rcase,

O
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Network Performance

t.6 -- ---

:,' " : Pt'vf(trmancc with S_,gmulds.

eh'_r bdun6_ for |O IriaRPedotm=nce vdth Sisn_m
Cnor l:_ndt f,_r 10 trials

1.4

a.2
D

0.8

AYerage Wei:ghft Magnitude

o_ t 2
|'.guise L_v_I

 0,L 1
Noise l.xv¢l

Po Neuron Ac_iva.tion DistributiOn

0++°++°++°c+" [-71F7 -o.+ + ,0 +o
_H I| HII IH Hoa t__-_t,_,,,_._,-- :o 2o at) 2o
'_: Otl=,.,,_u 0_------ Ol_-..=.=,_ Ot_=--.,_

O) o.2 0._ o._ o.s t _ -t 0 I .I o i .t o I .I o I
Noise l_vel _. activation acti_ati(m activatich ._¢ljvation

F'gure5.% Training a Multi-Layer SigmHn Network, Thruster Mapping

In the -_econd application, shown h_ F!gute 5.5, the hard-limiting network is trained to

emulate the optimal thruster mapping, which will be described in det_fil in the ¢lext s,?ction.

For now, this mapp)ng is used a._ ;_n independent _econd lest of the t._ethod. A similar

dramath: improvement in haz'd-l:miting perforntance occurs as ncdse increase:; p;tst about

0.5. It is not shown c,xt tke plot, but good perfortnant'e is cbtailled a.t h,ast up to a. noise hwc]

of three. The training v:et for this raa.pphTtg rt.,presetttt: co|ll, inuou_ vaJ.uet; being _appec' to

discrete val'aes, so the first-layer ,,veigltts are high (it|dicatittg .dmt.p decision hyper-_urfae,e._),

even fnr noise = O.

5.7 .&pplication to. Thrust<._r.,Mapping Problem

ltt order to demonstrate thJ,s new training procedure, it was applied to the thru _' ' ; 9")ing

with indirect train|Jig, as shown in Figure 5.6 or the top s_ctio,, of Figure 2. L3 _ ' .... "a.w,

the el?ritual lll_q)l}hl$_ is ltot u.._ed, and tke neutral no*work t/l_l_t lea.rlx the ,il&pl. • ' t :otlgh

experimentation with the plant tnudel. 'l'hi: r_.quire.; back-propagatkm uf eFt'OF thruugh

tile discontinuous tl r_l, ters, whiclt motivated d,evelopmont o; I hv noi..( injection |,|ethod

preseated iti this ch,nptr.r.

"Frait,ing _ithuut tiff-" _toi.,.e.it_je,:ti0u _echniq,w l_ro(.luce:; large error.;_ {',ec;tll.,,o the ,li:-

crete-valued nat,|ro of Ih,, thr,,-t,.re is not md'orcpd durir,._, t,,tvmtk traiai|,l.', ;tp.d l:,rw'
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RUN TIME

TRAINING

Forward Sweep

TRAI_ING

Backward Sweep

"--'_" I &M-'---" I &.eli
V aN t_F_,

Figure $._i: Thruster .Me, pping, Indirect Training Method

roundoff err_urs renault at rrm-t.ime. For example if one unit of thrust is requested in the

+x direction, during training, the network will set './'4 and T,_ to +0.5; but at run thne, for

requested fo:.'ce_ near 1.0, Tt and 'T,_ are likely _o both be 0 or both be 1, r**ulting in a large

error.

Thruster Mocld_ Prrf0rma_e OnActual Phmt. DifferentModel._

| • •

Indirect"I_ning.l inur thO.tstrtrnt_ld -

li,, .
_. I . ' _-! t0_

.,L'L_
-I .-05 0 O.'i I 2 4 6 8 I0

JflptV"(¢o_nff.uld_:dthrJ$l) i_lnlIL1ff_Ix_r

F'gure 'i.7: Re_ult:_ of lndir.ect Training, Two Differentiablm:rhruster Moclel,,_

The mgmotd-bltsed alqWO._:ihl,_tiotl (wit&out l.!ois,?) i._ hettot than the' lil; ear 11jude},

flu| Ilt_S hm_ted petfotmallce. The rcslllt!_ Item dirO¢l _rahling ¢epte_ent a loi|'et limit

tbr cotnbari._ot_ Mapl_lnS" error h, average percet_t error abcwe the ot_imal rhapping

(whirh results from nn exhaus!ive search o[ all possible thruster combinathm.¢).

'l,tie ,shaded areas relW,_s,,tit fhr reran :_: e fur le_| different rlltlS, 3 - Ill - 4 layered

/v..t_w.,rk, wr.ro ,|so,t

tl

'--mImmmllliI/IlInIIIIIIIiIIIIIlI|I||
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l'ndir_tTraining,

Figure 5.8: Results of Indirect Trahfing, Noisy Tri-Level $igmold Thruster Model

LeD: the s_gmoid sharpt,e_s factor (_lope at the midpoint := 4) a_,d nois_, le','el (0.15)
for the noisy ¢ri.lev,_.l sigmoia appear £_ be mtuiLirely cor.:ect, Right: _ noise
increa_,_, _oerfotrnance _qqJroa,'h_; that ,)f the network ttam'.d directb" (el_ulating
the optimM mzppmg.), with ben t p,:r[otmanc_: at a nelse level of abcu t O.J,5. 3- ] 0-4

L*,)'eted networks were u._ed,

Eigure 5.7 show,_ the result .of J_tdirect training with two diff,.'reJ_tiabk, tltru_ter rood.

el,;. During; training with the c(:,nti,,,,,),,_ tit.rus;er mctdels, the neural network produces a

mapping with a very low error, which is not plotted here. Ho_ever, when the continu-

ous thruster's are re_la,:ed by signum thrusters at rim-time, t]l_ error is large, _.nd is t],<:

"'thru._ter mapping error" plotted i_, the ,ight hall' of Figures 5.7 anet 5.8. The ..*rrors are

ldl{h because the ,¢tw,_rk learn,._d lo optirniT.e the solution u:;it,Nl uutputs that.would be

ut.available at.rtm.tin,,,. "l'h,r _e._,,Iti,_g routtdoff error i_: tmknow_ to the neural m_twor],

d,: rh,g t raiMa:_.

ht Fil_ur¢._ .5.7"a.rtd ,5.8, each dot relm,._ents the final pe]forniance alter a t0.000 epoch

trahtittg rur_. Th,, shaded _.g:(,_,r. r<pre_er.t rqean :: a p,rformam,, f(_r tel| rlllls.

Figure 5.8 show._ the resuh._ v,hctt the thruster_ are nmdelt_'d hy nols,j tri level sig.

m,'fid,. With.no;_e -- O. err,r is hig;h. _:orresponding to the data in |'igurr 5.7. but a:.

m,isv iltt re_._es, p,._rf(_rmat_,:_ ;qqm_;irl,'s that el th0 network traine.-I direr'fly (elm_i;_li_R tim

ol_.timal m;,ppiTiv, I.
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The dlrect-trainlng performance represents a lower hound ._et by the fl2nctional.cotn-

plexJty of the 3 - I0 - ,l layered network, The best noise vdu,._ ill this .appliCation seems

to be arcund 0.15,and the resultingnois):sigmoidis¢.ho',vnin the lefthalfof l-'i_ure5.8.

F.x_minirtg t his fi_;ure, the si81noid__harpness and noise.levels s._em t_ be seI correctly ac-

cording to int_fition. As noise _ increase.,, beyond 0.'2, er.ror increases a,_ expel:ted (the "off"

regioa of the slgTqoid b,._come._ blurred). The..method is fairly robu.,_L to the n,fi._c value

sd.l_,cted, a_td the _,ffeet of noise level on performance makes inttfitive ,_ense.

A good solutkm r_ult,;, when noi_ _. is added, he(:au:_e ._t prevents the network from

using a .,ohnion that uses non-saturated portions of the tri-level sigmohl. Such a Solution

wo,Jtd give a- nearly r,ando|r output and high .error during training. The trdning algorithm

must find. a solution that works well despite the noise addition. This moans the expected

val'Je of the output rrms'_ be well into the s_,tnrau,d regions to work couslstently wel/. The

re._'llts aplJr,_._:ma_e the optlrllal voh_tion very well., aT_d work _vhett the tri.level slgmoida

are replaced with tri-level sigmlms.

5.8 Other Use..; of Noise in Related. Problems

Noise ha:; boon shown tc_ be r,,ntral to the _uccess of this new algorithm. %VhiJe thi,, par-

ticular-use of noise is new, artificially-injected tloise has been u:od ._urce:.sfully in previous

application._ for control, neural nr,twork_, and.opdt_izatioz.

In contn)l and signal processing, q tmmization error results when an analog signal is

samplrd ,:lig!:tally (with inevit;thly flair,. • precision) by at_ A/D converter..q'hi., effect was

first -¢tudied extensively in the Ph.D. work of Bernard 9,'idrow. and publJd_ed in _66]. h_

ana.ly_ix_g this phe.nomei:.ott, tl:.e rouudoff error may be ttoat,,d as a _out'(:_ c,f noise. While

this work h_s littl,._ dire'or I)earing on the algorithm presonh,d here. thee pre._enc_ of no;,so

and r_;undoff: error in the _a.m_ problem is interc,_ti_lg.

In control al)pl)catiot_s, it is common to add all artilicial dither signal to break the eff0t.t.,;

of stiction. "J?hi._dithrr i:_ u_ually cho.,a,_t tu ¢_tt-ce a t'orc_, ju._t large ,'cat, ugh t¢_ overcome/he

:_tatic fticfiofi, and is ihput at a freq_e_cy high en¢_ugh that it does i_ot affect the rest of

the control ,.y_tem. Again. th_re is httlc direct c¢.lnh_¢lior: with the noi_)._igmoid tr,%ining

algorithm, but it represents a )revious al)i,licatiott _ff artiiicial nois_, injr,.ti,_n ih c_,ntrol.

In the. Itt_ntm_ vision sy._tonl, the lJmitalkm of a fihite mnmhrr t,I zc!rel,tuu's h_.dte retina

i_ ov_rcotae by the at'lificia[ addir_on _f a ditl|¢r _igl_al. Very :¢ma[l, hil_h-ftequ_'_,ry m_ticm,

It
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of th,._ e_'e are used to allow people.to she thit_ fae-away 0b3ects th_.t rn.ight otherwise go

u_.seen due_to the finite nu.mber-of reco.ptors.

When training a neural network with _. limited set of training data, one..appro.ach.to

control the effect of overfitting is to duplicate th_._¢lem_.nt s of the data set, and add differel_,t

_,naount:. of noise to each 0II.e, in atl at*clapt, to increase t_te eff,._ctiv¢ size. of the datz. set..

Adding noise to-the weight .updates hag be_'n tried, wit]l_some su.ccess, to iatprove the

learn?.ng speed of_eural-network training [34]. This is i_similar concept to simulated anneal-

ing, the addition ,af a, tandtml element in the _'eight update rule whose magnitude decreases

exponentially. The idea in simulated &ttttealing is to prevent the commtm opthaization

problem of gettittg stuck in a local minimuai. _f the magnitud¢ of the rax_dom el_metlt is

decreased slowly ent)ugh (i.e., the t iliie constant app.roaches intinit.v), con_:¢_.geiJce to the

global optimum is guarani.eccl. This gradual reduction in temperature is similar to tlmL

in ,x Inctallurgica[ atmeaLi_g process - hence the natne. Simulated allllealiltg is a common

al_gor[thm i::t optitnization for sy._:tems other than neural tte!works.

h.. generic algorithms, species are evolved using two primary methodq to go from one

generatitx_ to the n_:xt: {1) crossover, the ,:ombhlatlt0:_ of tr;dts betw,._n competitivelv-

_elected paten* s; and (2) mutz,tion, the addition of a random element in the uext.geaeratlon

ch roll_osotlle.

While the above examph, s show IhaT "he concept of artificially-added noise for con':rnl

_.nd <Jpt!mization problems i,; well-t,,sted, the u:._ of noise pz_es_atcd hi Ihi._ thesis - to

produce an ac('uri_te difl:ercntiable approximathm to a DVF for gradient-based optindzatlcm

- is completely iio.w.

5.9 Summary

This chaplet l,as de.,.crib_d a new t,,dlt_ique tlt;d allow_ backptopagatio:a l_,artfing to work

with _ystoms con_ai_fing discrete.-valued functions, despite the disconllrmity that exi:;ts be.

t-w¢cr, discr,._te value:,. The m_diflcation to backpropat',ation is ,.'er:," small, simply rot,miring

_igmoide.1 appro.ximntio(_ tJ t lw di.wrt, t,, valued fun,:tions, and the careful injection of t_ois_,

into t he _mooth app_ oxima'.in:] func*.iott on the fi_rward swepp. 7he nolst, inj,,ct ion is t rit:cal

to en _uring t.h.tt the llO'!b_" sigtlloid behgves like a s[.gfluln during traitfinz.

Mul_i-lnyes-eM.. tlCOttvf,rk._ of },al'd lhcit,,r_ cequitt_ Siml:,l_r praret.sillg hardwar,' tha, d_

ttltllti.layp[_..,'] :sigmnid ttotx_mks Sigttltaitl t_t,tss.,tks at,.' (olYlrllOll|if tlS,'d, hov. ox'er, tlut, t.
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their increased functionality as well as the lack of a_r_/iable training algorithm for signum

networks. Muhi-lay0rcd signum networks have no_," been successfully trained.using this

noise injectio.n, method ix: two different applications, clearly demo_stratinl_ if s uaeflfiness in

_his area.

Applk.:ation to a comple.x thruster-control prolflem, with implementation oa a labora,

Tory w,odel of _,.freeoflying sp_ce robot, has demonstraled the method's realizability and

t2s(,f)_ltlessfor on-off coat to) problems,

In each app]ication, the training behavior ]n lhe prc_enco, of noise has been well under-

.,rood. an,] the alg,:_rl_hm appears to be reJatlveiy robm_t Io.the an_plitudc of ttw injected

noi._e.
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Chapter 6
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Experim! ntal Demonstration of

Reconfiguration

E_perimenrs were perff,rmed on the mobile robot described izt Chapter 2 to verify the ap-

plicability of ,;hese aeu.ral network results. Position and _tt_tude of *.he robot b_tse ar_.,

controlled while ,,;ubjec,_ to multiple, larg_!, possibly-destabilizing .changes ia thruster char.

acter_stics. The plant is lit:ear and well.modeLled, e,xcept for the actuators, which ar_ on-off

thrusters that could ]lave alten, d chara cteristlcs. An off-board vision s.vstem provides h'gh.

bandwidth position feedback, which is then digitally filtered and differentiated to providf_

velocity feedback.. 0a-boal:d a¢celerometers and an angular.rate se**sor are usc.d to provide

base-acceleration measure.ments used by tho fail||re-det(:ctiott ar, d control-reconfigura_ion

capability. This chg.pter review:; tho ('otr,pleto control sys_,.,,t, and presents experimental

re:mlt t,.

6,.1 System Overview

Figure 6,1 shows the ova,rail .%vstom blot'k diagram which was discussed initially _.nChapwr 3.

ht thi_ chapter, Oath bl,",ck will t,t_ descrik,_d in detail.

The User issues motion command.; with a mouse, ba:;ed graphical u:;et interf_tce (GUI)

that r_ns on a S-tltlI w.orkstatio;a adjacen_ t.o the robot. "['he usher vi_rv,'S an image of tlt_r

robot that is t=lJdated with real-time data from the Pogition Set:sot descfibt, d bek,',_. H<r

or sh,: c.an use t_e mouse tu ,lrag a ghost imag,_ of the rob_t t(_ the de:iro,:l final lo,:at)_m,

;St,fi i_, a trademark ()f Sun _,ticro:iyMvm_, hw

87
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k._T-2 Adaptive System .

....r=................
.. V.--.'Impp,rCNN ; .....;-I

Figure 6.1:Reconflgurable Control System - B].ock Diagram

This (:onfrol system is ba_ed upon a co_t'entionat indirect adaptiv_ contrOl/eL ,._uch
._ a ,_elf.tuning regulator. F,xa_lples of the crmtinueu6-v&lued Fd_, vector anti
the corresponding discrete-valued "l' vector _Jre shown. The ID block represents
a _eclzrsive-lea_t-squarez identification oF thruster strength and direction. Thi._
contir,.ually-upda_ed mod_.l ia p_:_ed to the neural aetsvork training block, shown
in detail in Figure _.6. _he continually.updated neural _hrus_er mapper is copied
periodically into _he active control loop.

adjusting its position and orientations. The motion is then iniliated by clk'kiag ¢,, a button

tha_ is part of the GUI.

The Trajectory Generator receives tim current and desired position and velocity vcc.

tors and generates _ quh._tic.polynomial trajectory:bctwcc_t the t_'o locatio_t,_. A quintic-

i.,olynomi_ r.,qeans the_e are six coefI'_cb_mt._of a polynomial function of time. TheSe pa-

rameters are chose:a to match 1.he initial a_ld final position aud ve!ociiy (fo_.r parameters)

and set acccberat[oa to _('toa_ iniIlal, and final limes (the two remainb_g parameters).._The

d,ratlc, a of the slew i,,_miaimi_ed ax_l.omati_'ally while not cxceedlnl_ th0 p_'_..dcfincd acce/

era_ion limits (correslznndlng to the limits in actuation). The result is a time hi_ory of

desired stat0._,..X_ .... con.qstiag of [z#o.,, yd¢,. ¢,_e._. :c_,,, Y_¢_, _'_.._].

:[he F'D Controller tuke:, the desired s_a[e, X.t,,,, from the Tt.ajectvry Genera .....

tor. attd the measured .,.tare, X, froin the Position _]onsor, The Ira,slational prot_*t-

rional and d,,.rivativ0 gain_ are 32.5 ,N/m and 9: N/(l_t/s), resulting in clo:,ed letup poles

@

@
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6. I. SYSTEM OVERVIEW 89

at ,s - --0.65 4- 0.2j (neglecting effects of the on.off actuators). The output of this

component is a.continuou:t-valued desired force vector, ._¢cs = [F_., Y_,t, ,, ro_¢+], such as

[0.9 N, -1.3 N., 0+4 N-m].

The Thruster Mapper takes (.he desired fi)rce vector, F&,,, and produces the thruster

vector, ?.', that causes the tllrusters to open or close. An FCA network is u,_cd to inq)|ement

the thruster mapper. Like the rest of the. low-level control loop, it is written in the C

programming language and exe.cuted on a Motorola ® 68040 processor (MV,ME 167) on

tim robot. The real-time.control system wa._ developed with ConzrolShell 2 development

softwareav:dthe VxWorks a operatingsystem, Dot ailsofthe network are described below.

The liigaal flow of tke thruster-mapper component is shown in Figure 6.2. The final output

isthe binary eight-elemcnt.w:clorof thrustersto fire:T = [TI _7_7_ 7:4Ts 1'6Tr 7_].

ThrttsterMapper
periodicallycc,piecltorobot

frQn:,traimng process

41-

Figu:e 6.2:- Thrustc:r l_Inpper - _;ignal Flow

The #ig'tml lq_.w rff th_ "tbrnster.mapp_r" compo_,_etd sh,Jwt_ in Figure 6 1 ia pro.
_ent_d. "Th_ mapper produce._ a Tm_p vector baaed upon the desired force, but
this signal may b• cllanged _' the ."/')re Control Module" during the idetitification

process. ,4 list of thru.stets to excite, '1"_,+, i,; provided bv tlw "ID" component.
A l"ireOntOnly signal is also used to sitnp]ify the id.'nt|tlctdion b.v limiting firing
_o ot_e +_hrustt-r at a tin|e. Both of _h+.._eID+r_laled funchotls may l.,e ovor..riddeu if

!_e tra<:ktr,g error, .)t',,,, _s too high. 'The parameters (neural net work _veight_) _hat
d+:fil_e _.hc futlc_ion .iltl.Olel_vtffed |)y _,he' thrustor mapp_,r _c +9cr|odically copied
fro_i_ the ncural.;_et|,,orJ: trainiug ptocds_"

"+ContlolShell is _ Irad_,mnrk o[ R(,d.Timc lnnuvatmn_,. Inc.
:V.OA',rks i_ a tradcfftatk ot ',Viad Rivet S_._tvm_ ht_.

4L

mm m +m m
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The Robot has a m,_ss of 70 kg, floats nearly frictionlessly On the_gr.anite table, has

eight thrusters_ each.nominally, prgducing 1 Newton of thru,_t. $flLce control of the robot

manipulators was not relevant to this research, the arms are commanded to m _intain a fixed

position a.t all times. This invo].vet_ RVD:I' sensors, art analog pre-f.dterlag and different] ating

circuit, A/D converters, a PD controller fo_ each of the four joints, D/A converters, motor

driver boards, and finally the br_ush]ess I)C motor._ and cable drive system .that _etuate

the arms. The arm endpoints are eq_fipped with pneumatic phmger_, ;_llowing the robot to

capture, a free-floating target object.

The Position Sensor is a pair of CCD cameras mounted to the ceiling above thr

robot. Two ,:ameras are required to cover, the total surface area of the 2.74 × 3.{}5 meter

(9 x -12 foot} gra,nite table, The cameras detect a pattern of LEDs mounted to the top

of t he robot. A custom vision processing board processes the camera outpu_ and produces

position iaformati_m .at a 60 Hz update r_.te tha, t i:_ accurate to better than 1 ram. This

[z. y, ¢] vector is digitally filtered and differenced _:o produce _, velocity' vector. The

pr0ces;_ing is performed off.board and then communicated back to the robot via a wireh:ss

Ethernet data/_:ommunicatiow_ link.

The Sample Rate for the low-level |:ontml loop was t'ho._en to be I0 Hz. This i_

more than an order of magnitude faster than the PD controller bandwidtt_, and is slow

enough to. _llow transleat accel,_.tatio1_ effecl;s to d_e out, leading to she accura to aca;leratbgn

information needed for reconfigurati(m. If reconfiguration is not required, th_ :;ample. re..te

can be increased to 60 Hz. Sampling fa:¢ter than that produces no benefit., _iace the vi._ion

system oper_te._, at 60 ][z, and the. thrur.te_ bandwidth is approximate!.y 30 ltz.

Summary of the signal_flow i.n the: lew-level control loop, LEDs or. tc.p of the

_obot ,:rail it, listed light. CCD cameras on the coilhg leceive th,._ light, a1_d .,_end the _;lgr..,_l

via a coa_:ial cable to the custom vi_iort proce:_ing board rtlottnh?d o1_ :Lfixed rack adjacent

to the granil:e table. TL_ "pointtgtabber" vision ho_rd scan_ tlie im_tge fol' bright pixeis.

When the known pa_tern of LEDs is located, the vision board calculate,_ the o_:ient_tio;a and

geometric center of the robot. Velocity is also ¢idcttlated on the vislo|t l:oa::d by digitally

Iiltering the po_itioa i_fformation. 'l.'he (i-element robot state v'ector is br¢_adcast tn the

robot at a 60 llz updat,. _ rat_ (and les_, than 30 ms total time delay} over the Motomia

Altair wireless Etheriser aye;tom, The robot then sends this tnf,'_rmation back to tht u:.ct_

int,,rface runrting on a Sun workstation, The err-board microptoc,e.ssor takes the :_ta_ _ (,rtof

and use._ tFtc PD .eontrolh:r !.o calculatr the dr_ired force, cot vcrt to r,:&c_,t coordinacr_,
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and uses the Thruster Mapper to cah-ulatethe thrustervector(e.g.[I0 1 0 0 0 0 1]).

This vectorisseatover the VM£ backplane to the digitalI/O board, whLch then controls

the opening and closingof the elght solenoidvaJves,'1'hisreleases.air,from the 100 psi

reserv.oirout through the converging-divd.rglngnozzlestO produce one Newton of thrustper

thru.._ter.

The Acceleration Sensors are describedin detailin CJlapter'2.Two acc01erom_,ters

are mounted on the basc orthog9nal to one another, along with an _.ngular-ratesensor.

The accelerationsignalsand angular-rate,_ignalare pre-filter.edto remove the effectsof

extraneousvibrations.The filteredsignalspass_hrough an A/D converter,and then through

the VME backplane to the microprocessor.The base traltsla.tioaalacceh:rationw:ctoris

derivedby subtractingcentrifugal_.cceleratkms(calci_latedusingangular-fateinformation}

and ,:onvertingto the robot frame. 'l'hea,ngul_,r-accelerationslgaali'.sobtained by digitally

_tering and differencingthe angular.ratesignal.Who [_,#,f,]vectorofthe robot bassois

tke output of thiscompozi.eat,as shown inFigure 6,3.

Figure 6.3:Acceleration Sensors--Signal Flow

The.#i_nM flowofothc"accelcrat.ionsen.son+"¢ornpone_tshm,,'ninFigure& I i_

pre,,:ented.T/,ea¢celerometer._ard.filteredwithanalogand dI_Jt.alfiltersto Drod_ce

_he Ace.el#1 an.el#2signals.Tileangulal'.rateseasor_ignali_smJiiarly/_!tcr.!,d,
with tlic adcli_ional .,_le_era digital difference, whid_ produces _:,a_ w,:fl _ _.. _, is
output ditecOy,.whil _.¢; i_ u_ed to compeJlsat_, fi_t ¢e.nttifugal _roqerations ,nw¢_u_cd
l)y r.hc accelerometers. The accc'lerallon signa_a ate then totatioilall.v trat_sft_rmcd
to Mign with the z and y coordinates' of the robe,, lt'h_:n the angular-rate :_.tL,:or
uaturat_, angular t,_te amt n,'re/era_ion d_rived ftum the overhead vision syslem
are used, _ indic'areal b)' the logical _w_frhes.

Q The ID compon,,nt identil'tes _.he cha_acteri.:-tic_ fi_r each of th,: eigh¢ _hrtt:rror._ This is

described i:a detail below. At a simple level, it take-s it_ the acc_.leratitm vector and thrust,r
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vector, and performs a recursive line:'r _ ',L ;.o identify the thru:_tet para_meters. The

more-complJc_ted factors, such as f_.i_:-: _ and thruster.excite.thin, are described

below, and summarized ia Figure 6.9. A ....... .c. t_egression may be used here, _ince the

forward model of t.l,e.thrusters is linear: e.g. firing thruster (]) mayproduce -1.03 N in the

x direction, 0.07 N in y, and 0.137 .N.m in g:. 'l'.he result is a 24-element matrix: coutaiuing

the thrust produced by each t)f theeight thrusters ia each of the three degrees of freedom.

This is the "robot mode]" it_dicated in Figure 6. L.

Thruster Mapper

per£odicaUy copied Model updates

to control loop on robot from ID process

Fde_red ___ __ Factual

rig_Jre 6.4: Neural-Nctw'ork Training - Signal Flow

The signal flow of the "NN train" cotnponent shown in Figure 6.1 is preset_t_..d. Th._
model used in training is up&tted by the, ID proce:_, and the neural.network thruster
mapper rleveloped here is cut_,i_dperiodically-t o the thruster mapper running or, the
rebel Tl_e algorithm i_sc,:/to at'apt the neural _etwark b_ed on the error .._ig:_alj.<
showz_ in _'18ur_ _.6.

The NN train componei,t :s responsible for redesigning the thruster mapper to account

for change_ in I,hr rebut model. -.It waits until a majot ¢hz,ng,_..i:; detected, calculates a

linear mapper, and imple|neats i_: on the tobc|t u_ing the FCA, c:escribed in Chapter .1.

When smaller c]tauges occur Ias the,_ I1} proc'e._s co_v,._rg_._s), the model l_se,d fl_r trainh_g

i_ updated. If f'arther major chauges are detected, the net.work is reinitiaLizc_d to a newly-

_:alculated linear m._pr_cr. Indir,-_ct trahfiag is p_rformed usia8 the amdified backt!ropngadot|

algorithm de:scribed in ChaI_,ter 5. TJ_e thruster, mapper being tr_dned is c, apb.*d periodically

_o the thrusfer ,_tapper runr_ing on the iob_4. _he network is _,r0_wu _aduatlv. res'_lting.in

@
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a fast initial learninK rate. The details of the training are pre.cented below, and summarized

graphically in Figtlre.6.4.

Summary .of the signal _ow in the adaptive system: Acc(;lerometers and arL

angular-.rate ,,en._or measure motion, of the robot base. The r_.w slgaals are prcfihcred

on.board, pass through an A/D-convc_rter to the microprocessor, where the dynamics are

accounted for, and _he b_e acceleration vector i_s computed. "£his signal is tran,zmitted

usln_: the wireless Ethernet to a Sun workstatk)n that is runnirig thc ID prates,,. The ID

process forms the robot model and transmits upd_.tes to the NN #'raining process running

on a_aother Sun wolrk.s_;ation, q'he updated neural-network thruster mapper is copie_[

periodically tO ,he f,_bot via the wireless Ethernet, when: it is substituted for _;he thru:;ter

mappe.v running in the cont_ol loop.

6.2 Trajecto, ry-Following Perfi)rmance

Before the rec_)nf]gui:ation capabiliti.es ate prese_ate,:l, trajectory-following performance with

al_ thrusters working is disc.u_sed. Tiffs servers two purposes, First, it demonstrates th,_t the

be_e.eontrol stra.¢egy of separating the thruster-control sy,;tem into a control o_ntponen¢

and a thru.,.ter-mapping component is valid. Second, it d,:monstra_.es theft a imura]-network

e_ula'ion of the _earch.bas_,d ttm_ster rne.pl)er (which is optim;_l) cat; lnovid_e_ n_._r:optim_l

perform._nce.

When evaluating performnnce, the effects o[ the on-t_ff actuators should he c(msidcred.

Due to the control structure, l_D.control gains, a.ad thrusler,mapping_cost function sele_::!ed,

a dea.dband e._:ists within which the thru:_ters will not.fire, even with an optimal thruster

mapper. Whi._e the size of this deadband is difficult to chatacteri_e due;o _.he thruster

coupling effects, the maximutu stalic deadb_ t_d (a,_sumh_g zero w_locity error and error it

one degree.of fre(.do'nt only') i:s apprt_xhnately 2.9 cm in tr_nslatio_ a_d 10.g ° in yaw angle

(with the nominal Ihru_,ter c_>ntlguration).

6.2.1 Trajectory-Following Pelrformm_ce: One Degree of Freedom

Figure 6.5 shows the-traj_,ct¢_ry following performance for a single-decree-of-freedom _a-

neuver. 2:he robot base pnsitinl_ is _ow.mr_rtded to Jb]low _ quintJc.polynomia] trajt,ctory in

the +a' directk_n_l:he traj,ct,)ry paramt_ters are chosen t._ achieve thr' (les]t'(,d final p,_sit.io_

while _ettit.g, initial aml final v,:_ocit_ a_nd acee[_.r_t[¢n Io zero, Because c.f this, a cot_ple
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of seconds pa.ss before the thrusters fire, eve_1 ]hough the trajp.ctory beglnt; at t=O. The

duration of the maneuver is. set automatically, by keeping the peak acceleration withhz the

actuation Umits of the rf_hot. In this ease, the 1-meter slew took 20 seconds.

Single-axis Trajectory Following
T T 1

"= | _.- ..

:_0.6

•_ 0.4 ition
_ _ -.- Aelual Position (optimal mapping.)

"0.2 .......... _ " ............ _ Actual Position (NN mappin/0

0 5 10 15 20 ')5

•,. 0.04

0.02

"i-0.02

-0.0.$
0

time [seconds]

,$in_,le-.axis Trajectory Following, Position Error

: :"r_-----?F-"P°-_it_'°nE rr°r(°ptimal!tr_apping)]I

..... i 1-- Po,itio E o, (NNmappln ) 11

5 I0 15 20 25
t'me [secondS]

Figure 6.5: Sir, gle.Degree-o.C.,F_t'eedom Trajectory Followlng, ExI)erlmental Re-
sults

Traje('tory-_llowing l:,er£_tman('e is plotted for a quinti,'..p(dyt, omial trajeetoD'
of I_.ngth I motet and duratior_ 20 seconds, in the +r direction. The nominal
thru._tct ¢ot_iJguration i_ present.. An FCA ,,._et,'ork with 5 hidden neuron_ pro.
rides trajectary.fol|owing performance cornpa.rable to tha_ of the ot,_itn_a[ ¢ht!J_¢Or
mapper, which i_¢implemehh,d via exhaUsti_'o so,_,rch.

@

@

Th,, c¢mtrol _yste_:fl u_ed i_ the one described above, except that no adaptatkm is re.

qu__ired. Two dilferent thruster mappers ar_! u.scd: a l|eurtd-net,,votl( mapper implemented

with an. FCA no1work with .5 hidden neuron.,;; ._i,1 an optimal thruster tn_ppcrr, imph,m(mted

mm--m_=m,mmmmmmimmmmmimmmnllmmmmmmm|BBmmmB
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O

via exhaustive search. Both mappezs are aided by symmetries (as.de,_cribed in Chapter 2).

Ahl:ough the neural mapper is sub-optlmal (mapping performance on a ,'set of test data

resulted in aw_rage force :_rrors.3.5% greater than the opthnal mapper), the traj_,ctory-

tracking performance ie comparable. Due _o the presence of feedback, the 3.5%.mapping

error is not significaid, considering the other disturbing factors, su.ch as imperfect tkruster

charact.:ristics (steady-slate and transient), sensor noise, and deadband. _

13

0.5
._,2

(
x-,a_i:;p_.,,itiorllmL__

1.5

Figure 6.6: Multiple..Degree-of-Fr_-edom Trajectory Following

The initia', middle, u_d .qr,al ,oos,itz_ns are illustrated for a multi-coordinat_ ma-
neuver (_', y, 1:.) Q_Jintic.pol.vtJomial tcafl.etories are followed dmul/an,._ou:_ly in
each of OJe .Olree degrec.s of freedom. ] he position of the robot's g,_.ometric center
obtained u:_ing the FCA mapp,'r i:; a/_o plotted (heavy black hn,s_).

6.2.2 Trajectory-Folrowing Ptrfoemance: Three Degrees of ]_eedom

}br the muhi-cooi diJtate maneuver ([_,. y, w}} showJ_ in Fi:gure 6..{3.good t racking is obtai,_ed

ag.xin fr(_m both optimal and n_:u_'al-r.etwork tliruster-mapping com4_o:'tc_tts. II, this 22.

.,et.uw'l,lo_g tr..aj+:.ctory, th+_ rt)ht_t s:.muttaneously._ransl;_lcs 1 tttetel" ilt tl_,? -t-.z dir,,ctiot,,
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1 meter in the +y direction, and 180 ° in.the +_ direction. The posltJon of'the robot's

geometric center is plotted in this figure, QuJnti¢-poly_lomial trajectories are u_ed for e_.ch

degree of freedom, Each i,. exeCuted simultaneously, witk the peak acceleration for ea.ch

degree of'freedom limited to the physical actuation limits,

Trajectory Fo] lowing, FCA-Neural--Network "I'hrugtcr Mapper

4 [ "t ,. "r t _" "r.... T

_j 2]- "' '. " _ 'ir:'_-_ ' - "......

"_ / . .'*_'_ -- (\ .', . -

...... .........
u ] _..- " " .,_.'__'2_*_;__ ._"_ "-' .*" ....

')"4 L l- "" y Po:;ition Error l

-6 _ _ ---,,---,-_,.-_--_--::_. .... _ .L_.._
O 5 tO 15 21) 25 30

limc [scconds]

Io

-6
0

TrajectoryFollowing, Optimal ThrusterMappcr
.T T r T t

l ..... . :.. ...............

._- . _, " , - __..,,,_,.,_-,.=._'..

......... _-=± • ,.._,_. •..
]

.'_._.

_- x Pos.ition Error / "s _ ,.

- -. y Position E:Tor _] "_.." "_. _.l

-.- y_w,_AngleError | ., _ "

_"_" '---- "----" -r_--" _ ----- 7._. ''_ .....L. ..... _ .___t

5 IO 15 20 25 30
lime [serondq

Figure 6.7: Multlple..Degte0.of-Fteedor_t _ajectory Following, Experlmenta_ Re-

_ult, s

Ttaj_,.:_ary-followir,'g .¢rror for th_ ntulti.,:oo.rdhmtt, ntaheU t'_r tlJus_rated in Fil_-

ute 6.6 it; pluttud fur fact; of the thr_e coc.rdi.,._at,:s, (z, _, q'). The _.erfortt:am', r,f

the FCA Mapper with 5 hidden nourons is excellent, and is c,_mparable to that of

tile n;appor implemented with exhausm'c search ("Opt�real Thru.*t,'r ._fapl,er").

Q ....................

Q

Trz, j,,ctoty.folk_wl_=g,:rrors for _his n,ulti-coordinate maneuver arc plotted in i"igut¢ 6 7,

providing a cott,p;u'i:mt of tlv, neural and uptit,_a] thru:¢tot map_pets. Tl,is exp,.,rinzeat

u_.ed tl,e .,,ame t on:roller, u.';_d for t ho _nglt,.d_gtee.of.freodom manou vet dc_cr'b,.,d ahoy0.

i=ilttum=kmmmmmtmi ...... mmimmmmmmm||__ ...... mill
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Again, the performance i,: excellent, a.nd comparable results are obtained from the nelJral

and optimal mappers.

6,2.3 'Ik-ajec_ory-Fo_.lowing Performance: Summary

This prdiminary experim,_-nt has verified the applicability of the non-adaptive porIion_ of

the neural nel:work control syst_._m. The neural mapper was shown to prgvide trajectory-

following performance cor,apa.rable to the optimal mapper, which w_ implemented by ex-

haus_iv(, search. As discussed (_arlior, the advantages of the neurAl-network approach do

n(_t apply strc,ng_.y in this application until there is the requirement for reconfigurability.

0

6.3 Control l_,econfiguration Problem I2eflnition

Figure 6.8 shows the thru,;tei layout in the nominal configurati0a as well as an example of

a dramatically-re:tied configuration. The magnitude arm direction of each thru.,_ter is show1,.

Nominally, each thruster produces 1 New,on of force, directed as drown. 2"he fa.ilurcs wert_

produced by ::aechanie._y changing the thrusters. Failure_ include: half-strength (_),

plugged co,mpietely (_). angled at 45¢((_ _tnd _), _nd angled at 90"(_ and @). The

90 o failure mode._ place high dema,nd:_ on the contro[-reconfiguratkm system, sim:e they

destabilize the robot (changing the direction of torque results in positive feedback!).

Requirements fortke i'('confi_,urablectmtrolsystem include:

I. The robot is aot inflJrmed of the mttu,c of these failures, or oven that a failure ha,;

occurred. The a:laptive system must first detect, the failure(s), then identify th0

new thruster chat act eri._tk-,, ;tlld fittal.ly._ti'_.i;-t aitd irnplomOnt a now noural.n,:tworl."

ttiruSl.er mappc:r ,ha'. at'co,lilt5 for these changes.

Control mu_t be maintained a( all tittles, but artificial excitation i_ allowed whe,

po:dtion err,._rs are szaall. Thi.,, tequiremenl keep_ the robot wil bin the bo_.tttds of the

workspat'e (i.e. ut_ the tahh,)_ a,d allows it to carry on with i_s mis_ioa during the,

r0ronfiguration. For examph,, it, this ca.,.c, the robot can be co_amailded to /l_ov0

throu_z;hout thv work_pare dulhlg rezonfi_uraticm.

3. The e,tir_ adaptive system, iucl,tding ID-atid re-trainittg, is to be aut,tmtnotts, re

quiring .he tJ,_el illterv(_'l_tiolt.at all.



@ • @

98 CIIAPTER 6. EXPERIMEI_'TAL DEMOA'STRATION OF RECONFIGU.RATION

Nominal Configuration After Multiple Failu res

®

Figure 6.8: Example Failure Mc_de

Mags_itu..tc and direction of..,ac5 of th.,. eight thrusters is :djown. Thruster failur¢_
w_;t¢ .simulated mcc.4anic.ally wi_h weaker thrust_'.rs arid 90o and 45¢ dbo,'._. Sorer
of tht elb,_'s (h,s_abilize Che robot fg' cha_gmg the sign of xhrust in the ¢ direcliotJ,

Six out of eight thrusters have failed in th_t case presented here. 'l'her_ is no theoretical

limit to the nutnhvr fir t.Vlm of failure thai: ¢8.11be identified alid be accounted for by the

teconfigurah]0 control system. However, tho.ro, is a lJatit0.tion if the controUabLlity of the

lobot is impacted. For exalltple, if both thrusters on the front of the robot ((!) and (_,

as l_.b¢lled ill Figure (}.8) had fai2.ed completely, and no other l hrusters contributed force

iri that direction t-:c), t.hoye would be no actue,tion authority in the -,r direction. If it

were necessary to accommodate t'ai|nres like thit;, a. hight:r level p.rocess (perhaps part of

the. trajectory generator) could command the robot to rotate, bringing working thrusters

in lifw to provide t;ho. requj:.'ed thrust. In the OXatnple failure t.,lode t;llo'e,'lt in Figure 6.8,

there it; suflh:ief;.t actuation authority in plus anti ntJtlu_ directioa,_ for all thre(, d,,groes of

free,'lmn: .,;o this issu_ is t_ot ye'; addressed hei'_._.

'.I'O ,¢.liHllari20, tlit_ |Lt_i(: recottfiguratioli strategy i:; trp first d0.tect thct failure(s), the,!

identify the new thr,st(,r charactefit_tic_, lind fillalJ.y train and impl0ntot_t a ltcw nt.urM-

n_t_.,'ork thruster mapper. Thv sttuct ure of the control t;y_t 0m is summarized in Figure 6. L

ll.utJnilt8 the adaptive pr£u'e_s (fl(,,r;tl-nctwork training) in parallel with the. iflentific;tti/n,

process leads to stabiliz_,tion within _o,:c,nds, nnd ('nu_o._ the r,_hot to l,,,,_¢(,I;-c(_tttxolh,d

dttring th(, identification.

@
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6.4 Identification of Failures

Before reconfiguration ca_ occur, the failures mus: be identified. The ¢ontr¢l systera is not

ilffornied of the number or type of failures beforehand. It naustde_,ect, and subseque!_tly

identify, each of the failed thrusters. Failure detection and syslem identification are closely

related in thi,,; imph:mentatiort, so they are presented togetlt6r here. The signal flow of the

identification proee,,;s is shown in Figure..6.9.

_mTln¢^a'XON

• ,,m,.-..-,,r-,._., :, =m,qa/,_ohl_+? I-'-"1

e_htrai_euri_ tte'_l
1"
I Tna_

0 • . . Fir¢On_Onlx

"------'_"_: "'_ "- ' _ 0,."_".""
I,m ¢'=fftde==o) ----' ntanlxl'

Figure 6.9: Identification Process ,- Signal Flow

[nput._ are the thruster commands attd ,'_.ccelerMionsignals, ._ample_lfi.om th,, real.
rim,: system a t 10 Ifz. The primat)" r,utl,llt i.St he model of thrll_t_.t ch,_racteristirs,
a 3 x 8 matrix eontaimtig the f_tward t|l/sppill,g honl thr_:sters to _ccelcratmn.s.
.Additional outputs, 7;_,_ ut_,-fb'ireOnrO_,ly, ttt_ used _tl the control loop _ part

of the t_ti_cial excitation l,roc_s,¢

@

6._,1 Identification Su:mrnary

The _ask is to take in r,rceletaHon :_ighal._.(;?, ._), i;), ,tl_d ltirtl.,.tel romma"_ds, and forn_ ;t

m_d¢,l of th,_.st r_.tlgtl, ar,d dir0ction ofo.wh thruswr. Since tiffs i:. a purely lirtonr reiation_hip,

th0r_, is no need for a neural _,orwork, ;trtd a linoar-syswms approach works w_ll. When th,,

thruster mudo.l is foultd to de¢ia':e from the Itolllh!._tl, it thru::ter failure i:, "SU_l_ected." '['h,:

thruster in .quC.stion will he excit_,d, artthtiaLI.v to obt_=, more infornlatlon abou'_ it._peedit|_',

up the ider.t_ficatior, p_¢c_ss. When a certain level of confidence is reached a==d the now

dtatactetint.ics of t[|l. _ n,.Ispecled thru_t0r are _:ultfirnlwd. tim artificial extltatiu_ is tur_c,6
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off. Throughput_the identilica.tioa, model updates are sent 1:o the neutral network training

component. This procedure, explained here fi)r olte thruster, runs in para.llel for each of the

eight thrusters..

There are a nu tuber of complicating factors for t he system identification .process: multi-

p!e thruslers may he. fired simultaneously; the acceleration signals are corruptt_d.by extra-

neous mechanical vibratiozt._ of the.robot-in tile frequetlcy range of interest; the response

time of the thxusters is on the o_:der of the ,_aniph, periocl; and varia, tioas in the reservoir

pressure during the firi_g of multiple thrusters affects the thrust output. These problems

ate addressed by filtering, red,action of the. sample raw to 10 ttz, and de:dgn of the system

ID proce_,;s (e.g. waiting for a certain confidence level to be reached - i.e. co:leering enotlgh

data -before declaring a thruster failure)

At the heart of the identiflc_tlon proced_ are two rccursive linear.regre.._sion processes

running in parallel, incorporating acceleration and thru:_ter signals as they become avai.lahle.

Each linear regressiO1t yields a 24-parameter model containing the z, y, attd ,# acceleration

associated with eath of the eight thrusters.

6.4,2 Failure Detection

The first recur.,ive lit.ear.regression process i., u_ed primarily to detect when a fa_hHe l.as

ocrurrod for each thruster. This "Failure.Detection" process has a weighting factor tl:at

causes it to focus on the most recevt few secondt_ of data (the w,lghting parameter decays

exponentially in time - a "forgetting factor"). 'The time constant of the exponential ,:lecay

was ¢ho._en to allow _quiek respoi_tse to a failure, but still allowing enough data coll(,ction to

l_r_;:'entpremature failure d<_clara:ion.

This I._rot:e_t_, shown in. Figure 6.9, is initialized with a nmdd of the-ltoxtliltai.thluster

tx,,ufigttrat,,:.r.: l:owevc.r, due to-the f,_tgettilig_fa¢.tot, the model can change quickly based

ttpo_t _,e,,v-da,t;,.. Th0 recursive proce_n propagatel a. ttt0del (3 × 8 matrix ropresen_ing tile

best es;i_tato of th._ accelere ties t_'esultit:g from e_ch _hrustsr) arm xovariafico-n'latrLx (8 >;S

matrix repri,:i0.nttnig the artlount of informatioti coUected t_of ¢.arh of tht, 0]ght thru_teps).

Every ritae a thrust4_r is fired, the ID process collects lllOf'0 int'ormation abtnt? that

thruster, leading to a higher lev_,! of confideno_ in the e_,timate of the model paramotor._ fc_r

that tF_ru:_tot, A "confidett¢o factor" i._ calculated by taking th,._ diagonal..terms frets tlw

inverse.of th,? eovarianr_, ttmtri×, i. : !o the forgetti_tg factor, the confidence tarter doe,:

t,ol ri._: maa,_tonlcaily - it will fall if the tbrurdvt' i_ tin" fif'cd t'til ,"iOlll(' thn,_',
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The model gerterated is compared wit.h an "Accepted Model." The "Accepted Model"

is the overall be,it estimate of thruster.characteristics, and is.the one sent to the neural-

network-training, p_)cess. It is set initially to correspond to the 11onfinal thruster configu-

ra.tion,J)ut m_w be ,apdated by either of the two recursive finear-_egression processes.

If an error in the model is detected-(i.e, difference between identified _nd accepted

models exceeds a. certain threshold) for one or more thrusters, and t he confldexlce h:vd for

the thrusterfs)is high enough, n _uspected. thruster faiture is declared. Tiffs d_:dsion process

is shown as the I.OGIC ELEMENT in Figure 6.9. When this condition is met, three things

happen:

0

I. The _,:uspected thruster is added to _he "List of Su:,pe,:ts."

_4

A reset signal is :_ent to the "Model-Building" Recursive Linear-Regression process.

For the rtewly.su_pected thru3ter(s) only, all prior hfformatJon is to be erased. T.his

is acldeved by inverting the covatiazto.o matrix, zeroing the row and column corre.

spondinl_i to each ncwly_suspected thruster, inverting this matri): (setting the diagculal

element to a small numbex so the inversion is possible), and ,,;erring the cov_tri_tnce

tu_ttrix equal to rids quantity. This has the effect of elhni_ating atly prior information

concerni_ag the newly-susp,,cted t hrust_,r, while leaving the rest of the model ixttact.

The identified model (for the rtew/y-suspe_:ted thruster(s) only) is copied to the "Ac.

cepted Model." '/'hi,, is showxl by the ,:lo,,;ing of the switch in Figure. 6.9. This xzew

"Accepted Model" i_ then sent imnt0diately to the neur_d-lletwor_ training process.

Th0re, a lirt_.ar apprcximat_ solution is.calculated hrtmediately 4, hffused i_tto an FCA

net work aml coph:d _;o t.he robot. The result is a uear.insta,ata_tr<,u._ _h_.biliT.a!ion of

thr rcbot, otice the thruster htilure has been <letected_

Oclc0 a thruster is suspec_0d, it will not bt_ _abeIled a_ a suspect ag,ain until th0 a_dal_.

tatiolt p.roc.*ss is reset. It will remain on the list of su:_pects u_til il is ro_i_oved IO' thr

"Model-_uildhtg" R_:cursive [,in('ar-Rel_re,siolt pto¢-.-_,.:.

t Tl':e a pfi,_r_ lin#nr _Mf_doz_ *a,_,,'dheie tva_ fi_i_t_,,_hy _._umi_ng / h,,t_ th{. th_dslet$ i|te rtp_bie of<ontlnuous.

v_dtled thrust olltput (a 1.in_afited ve:s_on of this ptobl_nl The solutiofa ia a_ _ _ ;_ p_rudo.invcls_ of the.

3 _. 8 inat¢ix wlni.:ln Iftal), thr0,trr_ to I_,_. f, rcr_. F. ht_n_,. _imph' _lju._t:m)_01_ aie qhen made to account

fur (by Olw._ided a_lbdct of the Ih/ust,,tl (ie. they calt ltot ptodtlce negati_: thru.,t).
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6.4.3 System Identification

The second recursive linear-regressiOn process is u_d to build the modeJ Of the thrusters

that i.'; used_for.neural-network training. This '_MQdel-13uiiding"-process does not h_ve a

forgetl:ing factor - it incorporates all of the informati0a equally, so the result is exactly the

same as if _ single batch-least-squaxes idelLtificatiou were rul_ u_ing ML of the.data.

This model is meant to be :_table, basically chaiLging oJdy after ;t suspected _:hrugtdr has

been flagged. For this rea.,on, it is initialized to the nominal model with _. high level of ...........

confidence, and therefore does not vary significantly wi.th raiLdom fluctua2ions in the data.

However, when a thruster is flagged as being suspected by the "Failure-Detection" process,

all information about that thruster is eliminated, _.s described above. Information _bout

the other thruster:i remains unchanged. New information about the suspected thru:.ter is

t hdn incorporated into the ID process, and it reacts quickly to the new situa_:ion due t o the

elimination of old !,.nformatio||.

1'he model and covariaace matrices are update([ recursively as new data comes in, as

with the "F_,;lure-Det.ection" Linear Regression. Since there i,_ no fi_rgctting factor, the

confidence &.ctor rise,._ monotOnicall.v. When certain levels of confidence are rca_'hed arid

error criteria are met, the "Accepte, d ModeF is updated. When confidence reaches a high

level, the thruster(s) in question will be removed from the "List of Su.,;pects."

During the time b,-.t_een first :_u_picioa and final confirm_,tion, _:he thrusr.er in Question

i._ excited artificially, as d_s_:ribed b,,low.

Q

O

e

O

@

@

0.4.4 Artificial Excite,tion

When a thra,;ter i_ su_pe<.ted of havirig failed, r_n artificiaL-exaltation nwthod will cause that

thr,:ster to fire moxe than it so:really would, allowing f¢_rraore i|_form,_.tion to he coll0ct0d,

and ultilhately, expediting idefitification. The excitat ion is achiew,d with two hasi<' methods:

(1}. wh_,n_positic_-rontro} error,.are "small." _. thru.,_ter n_ b_ fired open.loop foi: a brief

period of time (u_i_ilthe thrus:orcharacteristicsar_,identifio_dor the errorsar_ no longer

"._mall;"{'2)wheH positioa.ooa_rolerrorsare ":,'nediun_,'"the tllrustets_ha_ are targetedfor

_'XcJ_Attioi',;tr__.U:ied exclu_ivelyfor closed.loopcontrol.When when position-controlerrors

hecom_: "large," arlificial ex,:it_tion i.,; susp¢,nded until the _rrots-aro reduced.

'.Lh_, e>:chatio_ is conqrolled I)_ Iv,'(),";[gll;tlS split I't(_llt t|W idc!||Vifir;tticn prov,,s._ I_, v-h_,

robt _t '

e
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,

,

A list containing which, if any, of tho eight thrusters should be subjected 'co artificial

excitation: Te_eit_.

A TRUE/K'XI,SE command indicating whether the rob(lt.sho_zld limit itself to firing

one thruster at a time: FireOneO_ly,

List of Suspects

The "List of Su.-.'pect._" component in Figure 6,fl keeps track Of the suspected thruster._.

Thrusters ,are Added. to the Li,.t by. the "Failure-Detect ion" compot_.ent, and then removed by

the "Model-Bttilding" component one. _ their new characteristics have been. confirm,:d (and

possibly a confirlna:ion of nc change, if the initial failure-detection .,;ignal wa.,i erroneoias).

Fire 0 neO nl v

If the "Lis_ of Susp,eet:¢' contain.q any thrusters, FircOncOnly is set to be TRUE. Firing

of mttltiple thruster,_ complicate:_ the identification process, and identification accurac.v will

be improved if firing i,,: limited to one thruster at a time. H(_wever, keeping the tracking

error low i:; a priorit..v, ;_ttd may overrMe _.his limitation. Th.e flow of signals is summarized

in Figure 6.2.

List of Ttnrustcrs 1o Excite

When suspected thrusters e:dst, they are copied directly to the List of "l'hr,_st,._rs to Ex,:ito,

and are sent to the robot as T,.rcit,, _hcwn 11, Figures 6,2 acid 6.9, %%'hen all suspected

thrusters haw been clearod by the ".X_odel-])uiMing _. process, an._. thrusters thai. have not

yet been ideatifled to a.higli level of ¢ottfideltce art: added to 'l_rc_te. '['he Iogi,: btsltind thi_

is that if some faihtt'es have heert detected alread._', then what,.wer caused them (such as a

plutilbirtg failtare, mirro-meteotito i]np,act, or intentional damage imparted by a graduate

student) may have cau,.od other as-.vet.ua;detectod failures, axtcl ideMifviztg th,ml quickly is

in: portant,

Thrust_r excitation will b, _tl.tet|tpted a,_ Iottg as ;tt 10ant elm thru,_ter remains in 7"_:cie,,

If the robot position error is "largo,'" no excitation will be used the robot i_ most ,:ottcer,ed

with mait_taitting control, if the position errctr.b; "m_diuxn," anti l'ireOntOnlv i.'. set to bt,

'flit' E, the robot will [ite_exactly one thru:.ter. TIt0 thruster is chos(:n h) Ih_dlnl_ th0 tht'ustor

froll| those in T_r,.i,, ',*.'lu_secllrlol0tl._'.osl tit|tried characteri,,thn b*..st matche_ rhe d_.,iirod fi,rcp
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vector. In this middle zegion,.artificial excitation takes place, but also serves to control the

r0hst. If the Rosition error is "small," the robot will fire exactly one thruster. The thruster

is cho:_en b.v finding the.thruster from T, teit, whose currently-estimated characteristic._.-most

differ from the nomiaM. S¢,me hysteresis is added to pr_rent chatl'er across small/medium

and medium/larg<: bcJundaries.

This artificial excitation method leads to quick identification. For the ease presented

here, with ¢; of 8 thrusters failed, the ID process consistently takes les_ than 60 seconds

from ,,vhert the first l:hr_lstcr is fired uutil the last thruster is identified to a high level of

confidence.

A reconfiguration examI.:e, including error and thruster, flring plots, is presented at l:he

end o!! this ch_pter. The eff<:ct_, of the ]_D proce,;s and neural-networ]_ t_ainiztV, will be

presented there.

O

O

6.5 Neural-Network Training

The system identificat.ioz.,process,:aabe completed less_han fi0seconds,due to1;heartificial

excitatior,.,Howex,ez,tho cont.rolsys.temrequiremeratsdo not allow the system t_)remain

unstable forthat lengthof time (the sizeof the gr.'tnitetableisthe _.im._tingfactor).Use

ofl.ine_tr_LpproxJmatesolution:,implcmcnt(,drla the FCA provide,_tabillty,but with a l_Jw

levelof performance, l{.unningthe ne,,iral-networkt[ainlngprocessin parallelwith the

ll)processresu_.t$iahigher.pe|rformancecontrol,as the nonlinearcapabilitiesofthe _ettral

network optimizebcyc_ndthestartingpohd ofthelittea,rapprordmation. The neural.network

trai_ing process is showr in Fi._'ares 5.6 and 6.4.

The neural-n0r,:'orh trai_tittg i:_ trot activated until the fir:,t thruster failure is detected.

Fronl this point ,_n, it is r|m||ln[_, conti_.mously, ush_g the Juo:_t-recent r.hrust,:r model provided.

by the IL) process. When ,'t sigllifi,:ax|t chapge is detected, such a:. the _',otai loss of a

thrust¢,r, a lin0ar sohll}ot) is calculated, itlld the network, st artfs fr.vm.,cn arch, with the linear

solution input via the FCA. WheJl _mall c|tal_$e_ are detected, :,uch as the convergence of

_.n idctdificatiotl or, tl:e _tew final value, learning is con_intt0d with the upda':ed ttmdo:l.

Tlu: perft_rtttance of tire neural.networlt thruster mapper i._ ovaluated I,eriodicldly _zi

, '*I0st _et" of thru.qer-mapping input.output patteri_s. If the porf(_rman(e (a wt,ightod

t ombiltatiun of force nzat,:hillg a/_d_gas c**nservatJvn} is better the.n the tos'.sr.! l,Orlbrmaltee

of iho Ihrtlslt,r illalq,,i curr0atly oa the lobot, it will be copied to the. f_bot. 'rhe cc,py[ng is
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performed by sending the FCA weight, matrix (as tn Figure 4.2) over the wireless Eth0rnet.

The neural-network function rumdng 9a-the robot swaps in these new parameters, resulting

ill an in_tantaneotts chan_e in the func.tionality of th_ thruster mapper.

6.6 Rapid Reconfiguration

One of the major issues in neural control is speed of learning. This is important in the robot

appllcatlon due io the goal of stabilizing an altstabh: _ystem within a limited workspace.

IL._pid recoafiguratioa has been achiew:d hem, and it is due to a combination of two aspects

of the learning process: first due to the FCA, and ._ecoltd due to the growing of the network.

1. The I"CA helps before training begins by immediately giving the network a good linear

.,olution that stabilizes the robot.

2. The neural network is grown during training. This refers to starting with a few hidden

neurons and gradually adding new o;tes as training progresses. With few hidden

neurons, very-qulck _.earning takes place, _iace fewer compu_,atlons are reqltired, and

fewer tradaing pa_:tern$ are required (to _void overfitting). AS mr,re hidden neuron:_

arc added, Ihe learning rate slows dow_, but the. greater functionality can be used to

further cptimize performaItce.

The r.etwork begins with 3 inputs, 8 hidden n÷umas, and _.Ioutput,_, and gradually

grows to 30 or more hidden n_,,trort._ as trairfing progr,:-_se_. New hidden neuror_s are

added when p_:rft'rmance b0gins to plateau. To prevent ovrrfilting, the training-set

size is grown proportionally _.ith the number of hidden neurons. With 1his arrange-

mettt, a nlapping with _bout 3Off error above optimal result,; in 31) _,._¢onds, 20%

above optimal within 60 _cond_. and 10e_ ahnw, r,ptimal '_ within 300 _econd:,, run-

;ling en a Sun _parc 10 ',','orkstatioa. A.,, mort, hiddrit nruron._ are added, the mrtwurk

porform,_nrf, approaches optimality: bu! av t]_i, 0Xlmn_, _of ,_l.wet lrairfing.

"Due to th.: u_e t_l elioto.l_-v.d,led a,'ltl,_,tOl:_, there I_M:m,,t ,l_,,,y, .i fete,..'rr,_r _vvt,)t '|'h _. error value
reported here il_dteates Ihat th,_averaL_e llh_llllutl_ :_f th,. fete: error ','_:,.lor i._l.llJ ttmts Ihv man,mimic
a_hicvM_h, _'_th a _e._t,a_:st,_e :r'nrfh
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Six thru|t_rs are

se_rely miscm_iN_e_d,
as in figure 5.e,
and above

t < O, robot _-ithtn
deadband, rm_irus_rs

firing

t - 0, im_l dlst_rb_r_¢

applied to to.hot

t • 4, 4,6,6_r_st_r_

,u_p_cl_d, _tabilizir_
mapper landed,
trairtlng beglns

_t sixthand final,_,
ehrtzster fetlur_
confirmed to h_l|h level
ofconfldenc_

t • 46, sll tbr_l_r
characterise.tel
cvnfirm_

t -* ,,, n eural+ne_'ork
optimizatmn conttaue_

,r'-]Thrust+riss
candtdat_ for
lrtiflcial _ccita t/on

1 Thrus_t leailur_ is
lu._p_ted, but not
ye_: confimled

10 20 30 40 50 60 70 80 •Thr_,ter finng,Jme [_e¢l

Figure fi.].O: E_.peri_,_ental Result:s of I?.econflguration

[,r, y. _)] t)os_tio_ e_'t_t$ (dwired - act|tat) are p/ot{.,d durii_$ autonc)muus recotd;.guratirm of the

cu+,trc,! sysPem in t¢++pnnse to +he +i+: +evetc +htu,+tcr Pailt_res +hnwn _ l'ig,tre 6.8. Static ¢o+_lrol

deadba_d J_ a.pproxtmateiy .+ 3 cm in translation and + II ° in rotati_)n. TI_o robot begin..,, a_

rest within the deadbat_d, _s d_st,_rhed ,st t = O, stabili_'_s itself widzm .1 sc,cot_d_, and complete.s

_de_ti/ic'aii,_ (aided by artificial ex¢i_.ation) after 48 secotlds. The neural.network thruster thapper

continues to optimiz,:, at_er the identifiea{iulJ is coz_ple_e. 2_lru_ter $ignal,.¢ are showtl itz /ower phil.

Black r.:ct_hg,zlar rogions _udtcat,, p_tiods of _.htustet tiring. Datkly-sh+_d_d re,gions it)dwate th_

_ime dt+rin_t which the thruste_" w,._ suspected. In addition to artiliciaJ exci_atiun of the. s,L_l,ected

thtu_icis, rxr+tation of un-e,uapected IhrusPi'r_ i_ ,;sr, d $o expeditf_£b._e.i_'atiu, l,rocc_+. '[+hes+.

f,er_t-/_ arc ;ndJr:. trd by th," h.+';htly-shadCd ,,+gw, n_
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6.7 Experimental Results of Reconfiguration

Tile previousosec_:ionshave provided a description.ofthe structureof the controlsystem

used forreconliguration,a._wellas detaileddescriptionsofsew._ralof the key components_

In this section: e:_p_erim.en_al data from a typical reconfiguration to _'ecover from multiple

destabilizing thruster failures is presented. Figl_e 6.10 plots the position errors (desired -

actual) and thr,_ster-firing histories durin{_ the reconfiguration.

The thrusters have been misconfigured ,_ew_rely, as in Figure 6.$. Before t = 0, tile

complete control system is active, I)ut no thrusters fire, since the robot is drifting within

the control dee,riband. With ao _hrusters firing, 1he thruster failures do not cause problems,

but t_my a]._o cannot be detected.

At t = 0 seconds, a small disturbance is appJJed to the robot. One of the first thruster._

to fire is d_ruste_ G,) (shown in Figure 6.8 and the upper right corner of Pigure G.].0),

which, is de,_tabilizing hz ya_#, causing the robot to begin :_phming out of control. The error

si_;na_ in a]l degrees of freedom grow signi.Sc_ntly following the di_turbance, as seen in

Figure 6.10. The robot sp_ns to its left, c au_sii,g ¢._:_sl to increase and _.'e,r,,; to decrease

(¢err.,_-':_P_.,,,_- V_c_._t).The lower halfof Figure_.I0 shows how thruste_:s_) (_ and

st:_yon ala_ostcon'dtmousJy(indicatedby the blackregions)due 1o the instability.

During thls time [_' - 0 -. 4 sefonds), the "Faihre-Detection" process., shown in Fig-

ure 5.9, has been collecting data. At :_= 4 seconds it declares failu:es in thrusters @ _).

and (_). This triggers a series of events, all occuring at t = 4 seconds'.

J.. The "Accepted h..'{odel", is up,laled with the Re_w param.oter e_timatcs _or thrusters

_) (_ and _), as identified by the "Failure-Detection" process. The exponc_:.tially-

forgetting linear rc_t'e_ioa weights re_'e_tt d_t_a m¢_re heavily than old data, so the

m_,del buiR between t = 0 and _ -'- .1 may be used effectively as a crude first appmx,-

marion of the characterJsti,:s r_f t}_ru_lors (_ (_.

2. The new "Acc_'pled Model" is sent-to th,: n,_ural-n_.lwork-trainint_ process, whore a

linear ._olutlon is calculated ittlntediately and.impk:mentcd <m the robot iath,.* fo_m ....

of a_, I"CA m,twork. The model at _l, is poi,,t is just a rough esiimato, a,_d the linear

controller is far from optitltal, yet rhc._,, m,,t},od:, combin_, .tc result in the imn:,,,d}a!e

stabilization of the robc,_.
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.

,t.

The neural.network-tra[alng process begLns now, at t "" ,1 seconds, using the above-

mentioned linear ,_olutlon a_ a, starting point, for training a new thruster mapper to

accommodate the ttpdated model. This proce,_s continues indefinitely- model ttI_dates

are received from._he identification proces,_ al_d incorporated into the trainh_gtif the

change.' in model i:_ small (._;uch as the change in force estimate from 1.03 N to 0.95

N}, .training continues; J f the chazlg__: is significant (such a._ the initiM detectio_ of a

major failure), the tr_in]ng is re-started .with the linear solution as a .,_tarting point.

"rhruster.,_ _, _ and _ :ire added to the "List of Suspects" (shown in Figure 6.9),

indicated by the d_.rkly,shaded areas for t!]rusters _ _ and ® in Figure 6.10.

5. The :Tezcm vector is set to (4 5 6] and seat to the robot, along with a TRUE

FireOneOn2y _dgnal. As discussed earlier iIl this chapter, a TRUE FireOneOnly

Mgaal means that the controller will {ire only one thruster at a time (to obtain a more-

direct identifica.tion), unless the. regulation error becomes excessive. Furthermore, it

will select thrusters to fi_e from only those that are listed in _he Tczcite vector, again,

unless the regulation error becomes excessive. This will e×pedite the identification of

these newly-suspected thru'_ters. The effect of tkese actions is immediately apparent

in Figure 6.]0: after l = 4 second:;, only one thtuster is fired at _ time, aud the firing

of thrusters (_) (_) and _) is favored.

6. 'rl,., "Model..tluihting" process, shown in Figure 6.9', )s reset for thrusters _.) ,_ and

(_). That is, all information about thrus_.ers (_) _ and (_ ill this model is immediately

and completely elhninated, while the information about thru_ters O) _2) (:-_)_ and (])

remah_ unaltered. Sincn a dramatic failure.has b_.w.ndetected for _hru.,:ters _) Q_)and

_, these models are built fi:om scratcb_.heginning at ! = ,t st:tends.

Each of the 6 items mentioned above occurred at t = 4 seconds.

The eutnulativ,_ efle.(.t o;_ these events a.t t = ,t is immedlat_ and drarnatir. The robot is

stabilized.immc, di,:.tely, as v_n by, the Icv_ling off of positicm errors. This rapid _tabilit:ation

is _aade po_:dble by the quick estimation of what thtusterts @ _ arid (_) are doing, a_.d the

_uhsequent _iaear control d0sign and implelnentMion as an FC,A-neural-netwr_itk tiirusi:er

mapper on the robot. The orr_rs can be seett to increase initially due to the momentum of

the robot, and it takes a few ._ecolatl._ for them to turn arOtllld_ d_le to the limitation to firing

of ,he thruster at a tim:', bttr th_ r*,_torntkm of ,tabjlity is v[ear. 'flit. initial id.enlification

I
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is so fast in thls.case that errors never grew to be "large." If they had, the restrictiofl to

firing one thruster a.t a thne would have been lifted until the errors w._e reduced to lower

levels.

Q ....... At t = 6 ;_econds,thruster_ issuspected a_.d_:heentireprocessdescribedabove is

lepeated:_.linearmapper iscalculatedaI_dimplemented via.PCA; Te.=ci_ebecomes [24 5 6]:

arid the "Modcl.B,:ilding" process is reset for thruster _. The po,_ition-error re s.ujt.s a r.e

le,_s dralnatic, as the failm'e of thruster _) is not destabilizing.

• A.t t = 8 seconds, the "Model-Building" process reaches a sufficieat coafidence value . .

for its estimate of thruster _). ]t updates the "Accepted _odel" and removes thruster _¢)

from the "List of Susp.,.cts" and then from T:zcit_. This is indicatod on the plot by the

termination of the darkly-shaded re,glen for thruster _. It stops firing at th,_t point, as it

• _sn_ longer subject to artificial excitatiom

A.t t = 13 seconds, thru.,;ter,_ _ and (_ are confirmed similarly, as is thruster _} at

t := ]5 seconds. Observation of tim thruster, firing hi._t0ries and error plots shows what 1._

happening during this time: the suspected thrusters are excited _trtificially, one at a time,

@ resul':ing in a more.accurate identification. ]'he regulation error is kept roughly constant

during this period -i.e.within the bounds acceptabte by the-artil_clabexcitat].on process.

When thrttster (]) is construed at t _.: 15 secottds, no thru:sters remain on the "List of

Suspects." -Tl:e xemaining as-yet-unsuspected thrusters, [1 3 7" 8], are added to the T_.mt,_

vector. They do not, fire immediately, as.theerr0r is too high, but'once it is withi, acceptable

rang(: (_.fter thruster @ is used to red..ice the error), they fire.

Thruster @ fires at about t :: 17 a::td t -- 19 seconds. Since no other thrusters are firing

• at these time_,.it does nct .take ]oltg to identify it as a suspvct, whb'h occurs at I = 21)

_econds. Thxttster _ simulal:es a complete thruster failure, producing 0nly about 1/40th

of.the thrust from a seminal thrusu, r. IL stay:, oct for several seconds, yet the error i)lot:_

are fairly straight lines during this period, irtdicatitlg cc.nslan_, tllmnen! um and very little?

thru.,t, The "M(.,del-B,fi]di,g" process confirms this at t =: 2;_ _c,co.,(ls, r(:muving it from

the Ii._t ,)f sltSlWC:s.

With ,_n empty list of stlspects, thttt_ters _ c} and _ ,_r(, laheh,d for artificial excitation.

Thruster Q), the. other 90 _' elbow (the _ecund stto;.agly-des_abilizing "allure) is fired for the

lira( :imo., ('au_ing, a so_un,l lugs of _.tabilily. Thrustor _} had no! l)(!(,rl excited up until thi:_

poiht for two rca'_ons:
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I.The artificialexci'.atlonalgorithmrestrictsthrusteru:,etothosethrusters_.hathave

alreadybeen taggedassuspects,unlessregulationerrorsexceeda certainlimit.

3° The new ch_.ral-teristicsforthruster@ match the nominalcharacterlsticsof_ except

tlmt@ ismore effici,mtinproducingtorque.Thismakes _ more likelytofiretitan

formost (butnotall)force-vectorrequests.

These two effectscons)L.'reto preventthe firingbeforethe first.shortpulseoccurs

= 26 seconds(whe],bc,thoftheaboveconditionsallowfiringforthefirsttime),and then

fora sustainedfiringatt= 28 seconds(when thrusler@ istargetedforartificialexdtalion

to expedite the identitication)_

Tke instability is caught quickly, silLce the re._tof the plant is wall-characterized at t hi.q

point in *.he idcnr:.flcatk,n. When its new chnractc,-istics are confirmed at t = 36 se,'onds,

thi.*;represc_ts the ideutificz_tion of tha. sixth thruster faLlure and the final reset of the neural.

uetwo..-k Iraining pro,xs.q (the fin_d naj_r ,-liang(, detected in thruster chara_'tetlstics).

Thrusters (_) .and O, the only utt.alteted Ihrusters, are con.qrmed to have nc,minal

characteristics at t = 4g seconds, marking the end of the a, tifici_!ly-oxcited identification

ph_.se.F,_omthi_pointon.mod,:lupdatesatesmall,_nd made onlywhen theyexceeda

,:_rLa.htthreshold,soasnot todisrupttheneural-network-tra_nirtgl,ro,'es:,,h_thiscase,one

final minor adjust::nentwas made at t ::95 sccomls.

With the complet.ionofidentificati,m(allthrusterside.nti_cdto a highlevelof confi-

dence)atI :=48 second_;,artificialexci_atiotlends,and the:;oleol,jeftiveofthe<on_roller

istor_:gulat_tothe,lesiredpn,_itiovl.Positionerrorsinalld_,greesoffrccdomarc reduced

imt:._ediately,asseeninthe,.ophalfofFigu:e6.10betweent- 4_.'.a,d != 55 secottd__.Th,._re

issome overshooth_ t",pe;.,.kit,gatt --60 seconds.Thisisd,e primarily-tothedeadband

;_ssoclated with the on.off tl,rusters _. Following ",hi,.singh_ ,najt,r overshoot, th_ z_,gtfiation

citer i_. reduced it, b,, well-within the static deadband, and r_sults in an occo.,:ioral sit,g]o

thruster pul,_, as ..sh,,w_,i, the tl,ru.,;ter-fiting plot from t - 66 .- 80 seconds.

fD,e to the conttol struct(_re, Pl;_coattol gains, and thrusge:,|aappiitl; cost fit||clion sck.cted, a dc_.dba.nd

,,xi.v. withit, _,hich thc thrusters v.'iJl not I_re. et'e_, _sitl, nil optimal (hruste: m,tpw'r. While the, t, ize of this

tle_dbarvl is thflir,llt ' : ,-;,arart,:d_,., due to the thrultel-¢oup]i_g ,:ii'c¢ t_. the Pnaxifn0m static ¢le_dbafid

I_..suming i'clo ¢cloci _ct arid frier in one degr,:,, M frtedom cnly_ i_ appt,_ximmh.ly 2.9 cm in t|anslat|on

and lO.il _ in ,ili¢, anttle (_i!i, tl,c non_liial tt, tuslet couhsurali,nl _.

II
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6.8 Summary of Experimental Results

The performance of the neural-network-basedre¢onfigurab[_controlsystem, disphyed in

Figure (LIO. wa_ excellent, providing stabilization of the robot wi_.hbl four seconds, despite

the presenceof sixmajor thrusterfailures,

_he sy.,_tem-level,d_,si&nof the controlsystem,discussedin Chapter 3, resultedin the

_elec1:ionof a linear-systemsapproach foridentilleatiozl,but a |_o.|_ral-networkapproach for

the thr_3stermapping. The deciiiol_concerningidentificationwas criticalto achievingthe

quick failm0detectionand ide_tifi_atio_ztl,atreaulted(initialrecoveryoccurred afteronly

four._econds).The neural-netwc_rkmapwr provided flexibilityin adap|.in_lto the challges

in thruster ch;tr_cteristics.

The new F'ully.CoaaectedArchitecture,discussedinChapt*t ,hallowedthe neuralnet,

work to make immedi_.te us_,of lhe model provided by'the identificationcomponent. A

linearapproxi_natethrustermapper was _'a]culatedimmediately followingthe initialfailure

detectionat t = .iseconds. ImpleI_.enlat_onof I|d4linear_olutioz.with _he FCA provided

immediate stabilization.This was 1[bIlowedby opfimi;,_tionofthe nonlinearportioz_of the

xteura.lnetwork, resultiaginnear-optimalperfozmanc(:w!thin2 minutes. Thi_ pcrformanc,)

was obtained despitethe itapleHtez_tatio_on a serialmlcr_)processor;'hupleme_tationon

parallel-pmcessh|ghardware would providedramatic;-lly.fas,.erperformance..

The new b:arnin_algorithm de:_cribedin Chapter ,5was used to allow &radien_.based

optimization,inspit,.,ofthe presonc_ofthe non-dJfl'erentlabk_thrusters,"rh,:u_;ec.fg_adient

int'ormatiorto directthe optiml_.ationre._flledina dramatic improw._m|:ntinlearningza_,._

over ,^'hat<ou:d have bc_r,el*rainedwith a r|ietl*odthat was no_ gradient-based.
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C C].US" • "01.1, I{)I'IS

This fiu_d chapter coasist-_ of two section.q. Th/' first se,cti,.m sulim_arizes the fir.dings of thi;;

re::earch. The second gives suggestions for future researcl,.

7.1 Su:mmaxy

This thesis has deseribo.d four new deveiopwm_ts in neural-network control that grew out

of a research prt_gr_m ushlg a labora.tory-b,'ts_d ,._xpo.rinzeutal prob_type of a free.flying

space_ robot. The advances were motivmed by, and derek,peal ft_r, a L',_mple'< r_,coJlfigurablc,

theuster control problem appllcabl_ t,_ r,_al spacecraft. F'ocu;_sixng on a specific complex

contr,_l t_l_ was _:seful it1 identifying some of the real-world i,;su_:= iJ.tneur_l-n,_twork cof_trol.

The work has led to th,._ conc!.u._ion: 0hat re)flow

7.1.1 Syst,.*m-Lev,.q Design Approach: The Superiority of Hybrid Control

Ox,e basic <'on¢lu:;ion from this research i, that a combination of the nonlinear l,ro¢:e,_s,iu_,

eapal:,ititles of neural n_,lwotk_ with exi._li_g cvaventitulal ¢<_ntrol theory can im _,'ery pc}w.

_.rfu]. A ¢ag_ful syst(:m.level _:na'ysis a/td.dt.,-_igit thaL ,:oasiders the costs and benefit._ of all

av._ilable Ioo[_ from the t_ids of not:tal f_ptwork_, and _:owtrol is lik,.qy to be more ;_ucces-'fttl

tlL,_n_an approach that ha:. already dut'ided up-fro_it what it_oh; will h¢__lsecl. b.n objec'.iv(_

evahn;_tion of the co, ts and h_,nefi_s of each available apl,rnach, foil_wed by an efl_ci,:nt in,

te,_¢ra¢:io_,of the.,e approache.% ,_nd devvlopm¢,n_ of _,x1_1isioyl_ to e,'dsting th_:ot:,' where' _hey

are m;eded, cotistitute_ a pow0rf,_l _tra¢¢._y f,_r ,nlvtr_g corrqd_,× nonlinear c,_atrol probh,ms

in t.he ro_l ',v,_ld.
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[a this wo_k, the costs and benefits of neural network approache:_ h_ve been outlined,

_s_d objectively ¢omImred with alternative conventional .apin'oaehes. The overall success

of _he. reconfigurable control system resulting front applica.tion of_hi_ strategy provides

additional _alpport...to this conclu;dou.

To sumn_arize.the criteria for' vahmble al_plJcation_¢ ofneuvM networks, it was ,,.hewn

that applications .¢hou[d invvlve systems will[ inscrutM_le (if :he exact form can be derive.d,

that wll.l probably be m¢_re effective than a neural approat'h) nonllzLearlties (if the syst, em is

purely Line_r, linear med_ods tend to have better convergence and provabillty characteristics

ti_ar_ do t_ett_:al n_tworks) that may require sonte form of adaptatio3_. ('n_ural nc_twt_rks excel

here, _.ince they ave a_ready d_:siguod for iterative traildng). Additionally, neural :¢letwoi'ks

at(, well _uited to applh:a|.ioli_i th_.t require the processhig speed of a parallel ¢Omlluler,

since t heir archite(:tur_, i.¢ inherently l)araUel.

7.1.2 Quick Adaptation - FCA

A major issue in noura_ n_,twor]_ control, a_d particul_.rly ili reconflgurablo, or adaptive

cot|trol, is the requirenteltt for spe_,d oi adapt_.,tion. The ,control applieation achh'es_ed

here higl_ligh_s thitt need, siitce tht_ robot stJ,ffe::s a dest;tbilizlng change in its actuators. The

ittsl ability required a recovery within _e¢:onds, no'.. reinsures.or hottr_, A_d thi_; was _tchievvd,

A new fuli._'<cnt_,:ct,._d l_eural _netwotk architecture (FCA) was cle.vvhq_ed to addr_._s_

this speed issue. It i,_ a feedforward r_etwork tli_tt brings together for t.ho. fi_'._! tim_ many

u_.e.ful archit,,cturt: fea.ture_ d{_voloped b.v other retearchers It ha5 conno¢'tions h,-Lyond those

provided by a layered network_ y,,_ i._t ra_ttable wit h b.ad:propagat loll. Aided by a. systematic

¢.otxtpl,,xit.v cota*.rol schento, thi._ notwoth wlt.__hown to have certain advaittagcs over layer0d

z_0t',_ovk% partlcuhtrly for ¢.,_ntrol probh_itt,.

The most si_.nificant advant age iri th!s aplflic_'.iot_ is the ability re, incorporate! _valnleitdy

a lin0.ar sob, Lion b,._fove ttMrdn,g b_.gitts. In control, a,_ with o1 heJ' _.e].ds, line,at approximate

.,;_Jt:tions are oft0n casil._ cn.h'ulated ba,_2d.upot| prior Icnowledg__ of the syat{_m propvr*ies.

Quickly t:ah:,da'duli the linear appro:dmation, and direr:fly iltl_uttitzg that solution into the

xi0ttra] t_0_w¢.,rk facilitate_ rapid adaptatiott without t,ho tl(,_tl for thtl{:,cunSUl|_it_g it_tatiotL

Thiv G,aluro t,my be (,spoci;lly useful if it allows im:qle¢¢tate st_bilizati,_h, as it do0s her¢,,

Another f,,at ure of th,._ FC.,_. that cent tibutvs to [t_i rapid rate of atlat_tatiolt is the gtowittz

rff fht: llelv/ut'l.;, A..._mMl_:r {ft_'et ]tiddell neurons) flvtwo_k co[_verge_ more f/iphll_, _},tte

thel'e_;ttt,, fu_,,'ei [_;_t_alt_to!'s to ilcJapl: f_W_'r ¢alctt]at!c!ils n_cd to I_,e tTla(le, rt|t,[ a ,_lTiltlIor

Q

Q
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trainingset.isrequiredtopreve_itover-fitting.The,n_tworkb_gin_witha ,_m',dlnuraberof

hiddenne.umus,and graduallyaddsmore,asgreaterfunctionalcapacityiscalledfor.

7,1.3 Graclient..BasedOptimization for DVFa - Noisy Sigmoids

k nd,w (ec}a_ique was dev,floped that extends gradient.based opthni..,.ation (e.g. backprop:

agati0n learning) for the first time to systems involving di_crete-vahed flmctions (DVFs)

(which are not continuously differentiabl,,), This approach was motivated by the need for

adapting tt_ the cha_giag properties of tl'.e on-off thrusters used to control the re)bet. The

solution to this difftcttlt, but spo.cific probletn i._to approximate 1he DVF,.. w_th nolsy fig.

molds. This simple solution has been d_.monstrat_d to o.xtend to oth0.r _,pplications involving

optimlzatien with DVt'L Ot_.e important example is for neural networks built with h;trd-

[irnitlng nonLinearities rather than sigmoid filnctiotLS. These arc_attractive because they are

cheaper and easier to inlp_.etnettt in hardware, Another example is design optimiz_ttion for

systems with DVFs (e.g. a structural defign opth_ization that chooses bt:tween 1/4 ittch

and 3/g itt(:h waL! thickness, 3, 4, 5, or fi :scr<_ws,and 2 or 3 beam:,). This has not _et be_n

demonstrat(:d, but if:is expectedto work wdJ,.

The modification to backpropagation is very small, shnply requiring contin'_tous-approx.

iaiati0n of the DVF:¢. and injecticm of noise of1 the fotw_,rd sw,:ep; yet the improvem0nt in

network pe[fornqamc._, is dramatk'.

It works hy solv!ng the problem unacldr,:ssed by earlier m_thods: roundoff error. I't._r

gradient-based opthnizatlo,_ to work. durinlg tralrlng a gradi_:nt must exist and be r,on.

zero: So the obvious first step is to approximate tht: DVF with a continuous approximi_tiotl

which is continuously diff_t(,_tiable (e.g. sig,,to'd-I.,asc.d futtctionsJ. This method provid0s

some succ_s, bu_: errors r-.s,lt wheli (.xti,n_ive use of the transition togio_s occurs d_iri_g

trainif_g, at_d roufid elf to the neon, st ,Jiscreto l_:vel is required at rut. fin_e.

ldetltifyhig this roundoff error as the, probk_nt was ptc,lmbly ;is i,q}orta_tt a stop a.',

the _olution. identifiC_,tiOn wa_ aided by tl,_ ._biltty to compare tbt_ tesu!ts to a known

optimal sohttiot,, ms is known f,_r the thrttst_,r.mapping problem. Without kfiowi,g th_

l_.vel of perforaiancc tirol v:as po_sibl_, thv problem of ro_.fidoff 6tr,._r lnigh! never h_'t; ht:ctt

id,,t_fitied.

Once tl,e problem.x_'as idt,nttfied, st:vt,ra[ atteml_tS were tnxde to addn,s._ it. The _,,ttc.

cu_ltffttltl_¢thod itivolves the simi_lc, modification ofbt)e_ing noise inlo the sigmoid dttling

Iraifii,g. Noist: Creates random t, atputs ii tho ttansttioit rtgiof_s ;_reu._,d, but has litth_,@Fc._:_
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ifsatu..-alcdregionscloseto the alloweddiscr_televelsare u+_0d.Therefore,the trtm_ition

regions+are av6ided during trainlng,and roundofferrorismifflin0.1at run time.

7.1.4 Experimental Demonstration of Reconflgurable Conl:rol System

The ta-kofrapidreconfigurationinrespo++setode_tabillzlngthrusterfailuresfirstmotlvated

l ¢t,te.,ed.eveIopmonlsat_dthen drew upm__' m the experimentaldemcmstrAtiott.

, The sy,,;tem-levdcontroldesignapproach resultedirta syste_ relatedto+ convenlional

inditecf;adaptive controlsy.,,tem,attdused a ,euralnetwork as ittxefli<'ient,adaptive

method to imph:m(mt the no.linear thruster mapping contpon¢nt.

+ The FCA resubed i. ttear-immedi+tt, stabilization and ropid loar.ing, due to the

f++edthrough connectioils, and growing of the z|etwork,

• The gradlo.,t.basedopUmizati_.z_for dlscrete.v_.luedfimctionsresuked in a more a.d-

curaternappil_gdue to a good appro_mation to the m:-offthrustei's,while all6whlg

the rapldoptimizationmade p+_sslblewith use of gradienthlforntMiort.

Whetx tr2dnedoff-lineand testedexperimentallyon the r_.alrobot,the ,eur.al-network

thrqlstermapper, provided near.optimalp#rforxtlancedu dng,multiple.dcgree.of-freedon!tra-

jcct._r|_:s.Arbitrary a.ccura<:ycould b_ obtaitzcddepending upon the _izeof the network

used. With no thrusterfailures(so sym_et:,iesmay be us,:d)and ,5hiddeltneurons, a

thruster-mappingforce_.rrorof 3.5cAt was achi0.ved.This smalldrrori,_barelypelceptible

duc to the u,.0off(mdback i_tthe controlsystem.

When reconfiguri_gthe cotttrolsystem i_response.toprcvionsly.,anknown,ma.ic_r,desta-

bilizingthru._ter failures, rapid s+.abiLiz,_tiun and opti.|niZation wore achievd+d,..as seen.in

Figure (L+_.0. D<_tection of ._ destabilizing failure took from 2.5 scco,_ds (the problem is

complicated du_, to t_oisy accelerom_tet:q _nd to firing multiple thrusters shaulta.neo_lsly}.

After the inis:ial detc_rtion, calculatio:_ a,+ n stabli,,.inLi lino._r ;_pi,roximate solutiott, and im-

l,t_metitation via the f'CA _ook k,ss the, (me second. As thruster:; are ausl:,ec+ed to have

_h;mg0d characletistics (c.g, to b_: a.agled at .4.5¢ or O0°. have degraded _hrust output, or

t,+, iflulgged com1+let_i:,'), th_,y av_: artitidaily ,+_x<'ited to speed ul_ the idtmtificaticn. Sta-

I+,itity zm<t c',<med-loop cotitrcfl ape ni+dtRaitwd duri_g this time. With six out of the eight

tDae to the us," of distrcl¢.+'alu6d acL.alors, the,t6 15 almost alwass a fort'e ¢_:ror +P+tor. 'rh+: trtor value.

r,l+.+(_:<! I,ute iadteate+ that +.he av+:Pagt magt,itud- o| the (o',c+ error ',,,clot _+ 1.0'15 tim+.s the ruagnit.,I,'

acht_.+,,.,,tlqc s_,ith tht, ,_pti,t_al thtu'_t_t litnlq_cr.
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thrusters failed (two.were strongly destabilizing), tho identification converges within about

60 seconds. The neural network thruster mapper i_ trained concurrently with the irlentifi-

c_fion, and the mod¢:l used for training is continuously updaled. Near-optimal performance

is achieved by the end of the identification phase (e.g. 20% el'tel above optimal), and it

inlprgye,_ to arhit rar_ ,,c¢uracy with further trainin_rowing 9_f the network.

7.2 Recommendations for Future Work

Perforrn[ng this re_eart:h ge_terated a number of idea.s for possible future re.,_i,arch. The

following is a list of pos.,,ible future project ideas. As this J'es_,arch has encompassed a broad

range of issue.,;, from the details of az_ experimental implementatioR to the derivation of

a new optimization algorithm, the folJowing sugg4_._tious have been grouped in!,) specific

areas

i

7,2,1 ln_;e&ration of Neural-Network and C;otwentional Control

• One of the |:on¢lu_ions of Ibis w.,.earch ha_ b,2tm that the merging of tletlraJ a_,twork

technology with col_trol sy,ltems en_',in_ering cait lead tl] the dc:vclopmcal !if highly-

capable coal.tel sy:;tems. M_ch neural iwtwork theory and mtt,:h con:tel theory _.lxe_dy

exist that could produce significant advances in co||t el capability .,_imply through

astute, int_mtiot_ of them. With this in ndad, sore0 po._slbl_ rose,rob areas the! are

relat@:t to tkc robot aplfli_atio_l are suggested. Control ,_ystems for ph.v$ical plants

that are.difficult to mod_:l, and hay0 inst'rutab]e nontino.arifies ar_._good ta:egets. These

ma.v i_achtde high-attgle-of-att_ck aerodynamics, or undorwaccr robot |:on!tel.

This rose, arch has p_.esented a iec¢,nfigurabi_ co_atrol sy_tef_l irapl_:mented |n ieal.time.

Re.rozlflg|lra ble tol_trol i:, alt impgttaat area of research ia th_ military nil'craft iltdus_

lry, aa it is de_irahle, to haven control sy_tett_ that can recea'e_ from p,%rt]al syst0m

failure,- o,g, battl_ damage, whore port!oil era wing is shot oi__,or _oiae _:onttol _urfaces

lic_:olite iitoperable, N_ural network_ i_o atll'a¢live for thin apldiCatioit duo tt, their

ability Io d_:al wilh ';he noatitiear aerod.vnatlfic,., adal_tive ¢ap_bilit).. _nd r_,.'tl-time

proeo:.sing _,lli,t,_l if i|nplelil_elttqd ili har<lw_lre The _e.eonfigiiiation tlem: roqllir,:,llwnl,

for an unst;tbl_! alr_'_:a.fti., likely to b_: mca_,:ur_:d in hundredths of a secoml, i0s_,_d of

_c_;OlidS_as for the space rob_i! appli+;atiOll. II,trdwa"<_ illllllo.lll011i at ion of lhe rulieef, t_ ..............................................
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developed, here, combined with further devel0pment,_, t&ilored to tile aircraft applica.

tioa, could, make this _o;d hasibie. A alemory-based approach ma)' be required due

to tl,e high speed req_lirernent azl¢llimited data availability.

Feedf6r.ward neutral m,tworks built with sigmoidal a_:tivation functions were used ex.

rhn_ive;:.v ixnthis research, primarily becau,_e ,he.v appear to ho?.d vnuch p_romi:ie for

neural hcf work contr¢,l a.pplic_tions _n general.. Other neural network arch_tect,res

e:dst. _.nd may prove to offer a|tvantages, depondlwg uprm th_ application;

1. Radial. Basis Fun,-.tk,zl (RBF) neIworks ma_" b0 visible, as de_,cribed in Chapter J,

2. Sigtnoida.1 (a_d RBF) networks.work b)' at tempting to form ;_fltrietioti that "fits"

tile data. (t:'aitd.g cases) they ar_, pre.qp.nted. Tht: htJpc i_ that this function forrxls

a ger:eraliza_ion ¢>fthe tralndllg data, and the n#twork will perfurJn well ol!. _ew

data. How,._ver,oth#,r r_eu.*all)'.motiv_.ted approaches are megl_or)'-b,_secl, rather

tha.a fur,.ction-ba._#d, lL_ther fhaa lc_arna ge_:.er_HzingfUrLCtio_of the data, these

x|ncthod:_ remember the tr._it_.x_git_puts directly, and interpolato/extrapolate a_

_{._.d_.,d'_h_n _x÷wpoints are i_put. CMA.C [2] [3J is one example of a memory.

be.s_,d n_ural network that ha:; been _s_,d suc'e_.ssfuLl.vin control applications [2,3J.

Bri¢fl)', the tradeoff i_ _.l_atn_emox)'-based app:oache._ h,ar, very quickly, since

they simply rerll_,ml:,er ea¢'h tr_iniug ivqmt; but the [ece.ll ca_, be much sl,_w_,|',

since the n,__ares_,neighbors mu.q. b_' found a_! then interpolated to produce an

outp,t. Fc,nc_:io:_.hasocl approad,e,_, tralrt more slowly, as they m_st compress

th0-data, into the functional v'nrma_ created b.v th_._n,._tworl_ topolngy, Fret h_X'_ ....

ver_' fast recMl,

7.2.2 Opt.innal (Hybrid) Combination of Neural Networks with Cotreen-

tiorml Conlrol: _'CA

Tho ahilit)" to ixicorpvrat,_ prio;'-knowl0dge has p_oven to be the, most useful a,_p_ct

of the I'CA for this applicati.._x_. It is rur;'entl.v limited to li_eaL' s_lul.ior_s, Extensions

t,_ uther t._'pt,s of ,_c,l_ti_ns, IJ0rhaps ¢los,_l)" taitof'_,d _¢}conw,,ti_}nal cont_',_l tne_hods

u_a.vb_ useful,

• Eazz)' I,_gic ha.'. h_on at_ area of fete,hi inf e_'_,_ iv, thi, cofitro_ _'omn_,lllil)' rci',,_l),, The,

appeal of lu;_z) I_gi_ i_ it.,, ability to i_;corl',orat,, kA_owk'dgl. _ from ;_ h .llll_n e×p,._tt int, o
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a J.ogi¢ system. A number of rules are programmed :by tit(: expert (e.g. "if yc)u're close

to your destination, arid the brakes aren't too ]tot, and you're goingmedium speed,

and there are no immediate_obstacles, tlwn apply the.brakes gently"), and the fuzzy

logic is used toblend the effects of the_e rules together, in a more-gracefill manner

tha1_ is posdble with crisp logic. This ability to interface with human expertise ha._

proven to be useful for t,_ks for which-such human experti._e_can be encoded into a

logicsystem. Research ]ni_ccrporat.ingtl,.istype ofknowledge may be usefifl.Again,

an a.,_tute"hybrid" combh_ativ_lof fuzzy logicand conventionalc_ntrolmay well b_,

superiorto eitheralc_ne.

The major drawb;tckisthe po:;sibilJtyforeye,fitting,and a comple:_jt.vcontrolmethod

was appliedIoaddressthisissu<,l_cre.Severalotherneuralneta'orkpruning methods

existthat may deserveinw_stigation.

The _;em_ral problem of d÷terraining the optilaal topology of neural networks (includ.

lug tke number ar.,dconnectionsofuonllf_e_r|:le|rtents)remains an hnportant research

issue.The technique presentedhere (use ofthe FCA f.oallow th,_implemvntatkm of

any possiblesetoflayersor connection_,and the gradualadditionofhidden neurons

untilacceptab,).eperformarce isreached) providesa workable solutic)n,but there i.¢

room forother advartcet,that may improve tlleefficiencyof_he tot#elegyse._ectlozl.

Gl:adient.Based Optimizatt.on for DVFs

A significant f,-ature of '.he al$,orithrn presented here i.': that the specific r.ype of m)ise

used.(e.g. Gau..:.sian, uniform, ,tc.) i_ not importanl, l"urthermort,_for hi.level DVF_,

th,, algorithm is _,_bust to wide variations.in the m;tgnitude .of _he ttoise dis_:fibntion.

Although trading the noise level is a relatively ,_imple operation, ellmh_atkm ,)f Ibis._

requitemefd is a dear adv_t_tagts, Uufortmlat,)l_:, for DVFs with more than two levels,

tuning o_ the ,oi._e level i_ required (although se;ection is fairly rebus1 and intuitive}.

It ha** been st.'gg_:stcd *.hat this tuning may b,_. _tvoidcd if a difl'crcnt fotff_ of the

co_tiuuous apl.2rv×imatioa fuhctio_l is d_osea [45].

The algorithm ha_ b_en apl,lJed to two very different appli_'ation:; so far - optimizalio||

of a n,:ur_.l tte_v.'or k built with hard-lhnit ets, and _)ptintlzat ion of a ncttral.netwotk con.

trcdlor for a syhtem v'itl, tJh.off actuators. Th,_ simplicity of th_ ah_or:,thm, ¢ombinod

• mm 'm
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with the successon two unfelt.tedproblem.,.,causesoptimism forthe _pplicabilltyof

the algorithm to or.herfields.On(, clearapplicationisdesignoptimization,as men-

tioned Inthe rr.,earchsummary above.

The applh:ation to neural networks built with h_.rd-limiters has provided an efficient

t:ainingalgorithmfora new classof_leuralnetwork hardware, Study pfthe detailsof

_ach an implementation, or modification of t,he.aJgorithm to allowfor on-chip learning

would be beneficial,

7.2.4 Thruster Mapping

The_e _uggestion,_reflectfurtkeradvancements _:owarda betterthrustercontrolsy,.tem.

Tiffs project was chosen as a challenge problem to highlight some of the current issues in

neural network control However, if the goal were to make the best thruster conf;rol system

possible, these are :_ome issues that haw itot been fully addressed in tMs _research.

• A more complex mathentaficalmodel of the robot could be used:

I. Include_.hrusterIransi(,nts:due to the responsetime ofthe _olenoidvalve,a.r_d

additionally,the fini!e sizeof the chamber betw(.,_nthe valveand the nozzle,the

thtutltoutput istlme.dependo.n_.These effectswere ignored.

2. Includelow.gas-reservoireffects:the _.mount of gas remgining in the high and

lmv pres:_ur,.,reservoir_affect._the thrljt;toutput In theseexperhnent.%reservoir

l_.velswere kept closeto nominal so theseeff,__ct,;were mJnirrtized(a_m_ligJ_o_ed).

3. Account accuratelyfortnultiplethrusterfirings:due tolimitedflowinthe phlmb-

i,g,.thethrust,from each thrusterisreduced when multiph:-tltru:itersare fired

simuhat_o|.|sl_:(on the order of 10_ lossper extra thruster),A simple llno_,r

apprcxifnalio, w_,,s u_ed ibr these _.xperimenl.s.

Idenzifi cation of I hrus! et charicteri st its i:_ perform rd by a11alyzing t he direct relatio..

-qiip between thruster flriags and the resulting acceleratio.. While this i:i a rOl)ll,_t,

._elf-cuntailled ILl s('ho_lto that nie,:ts the r(.quircmeftts of thi:.: applicarior_, incorl m-

rail•it of position inform_tio_l (available from a visic..i_ :,ysiel]i or Global Posiiinulng

SvstoTrl) with a Kalmau filter should ilupro_e the. iden_ilic,fion.
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0

• The initial decision to separate the controller into control (PD controller that ignores

discrete-actuator effect' 0 and thruster_mappin& components, was made to simplify

the problem. It Simplified the problem at the expense of Optitaality. A subsequent

step, ma.de possible by the developments.in this work, is to merge the robot-base

controllerand thrustermapper designintoa singlecomponent. This should resultii,

improved totalsystem performance,as theneurM network providesa fastmethod for

ca!culatiag aa approximation to the optimal control soh:tion that can bc calculated

in real time. Oae approach could be t,) use the network for trajectory optimization,

acCmmting forthe on.offactuators.
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Appendix A

e

Thruster-Mapping Cost Function

This AFpendix prev._nts a variation on the. ccx_t fimction used to define the optimal thr_:ster

mapping. This fimctioa places weighted costs cm the force-rnappblt_ error and the amonnt

of gas used.

The co,_t functions that we:e u'._ed for th6 noural-aetwork developments [a Chapt_.rs 4

attd 5 attd the experiments in Chapter 6 were both presented, in Chapter 2. The comple.xity-

control term used to augment those cost function.._ was presented, in Chapter 4. Thi._ Ap-

pfmdix pr0set_ts an alternative t:ost function that ha., merit., but was not u_ed extensively

in this research.

In minimizing the force error (and possibly al.m gas usage) only, the thru,tcr mapper

does not considv.r the dyuandcs of the plant. It aSStlm_.s r.hat the F,_., vector _utpu_: by

the controller feedback law is chosen c;lre_u]]y enough that it needs c_l)" concern it$elf with

prod_cittg the closest matching Fae,. |n fact, in this application, the controller component

is a simple proportionabderivatlve controller {_hown i_a Figu_re 2.12) that does atot take iat(J

account the thru:_ter limitations.

The decision to seI,arate contn_l and ,tapi_ittg eompon,_nts was made largely flJr ,din-

pLicity in design. Ideally, the controller conipon_._nt would be aware of thruster ihnitatioas .-

for e_iampl,.*, a hang.bang cot.troller in,toad ,_f a PD toni roller. Impl,_mt,.ntiltg a bang-bang

controller ifi r_al tithe would probably result iti the :iatllC ¢teclsitln that was m_de ft_/" the

thruster mapper here: use a neu_'ed network to implement a noitlinenl appto.'dmatlou to

the optimal controller -- one that van be compnted in teal tbne. In this ease. it may b,,

beneficial to met_,e the ,et:ra/.network contr¢,l c,_mpoalent with the neural-nerwor|: mapping

_'omlmn,_nt. "l-he single Itetlf'a] tLe!_orl., would if:tell lila[_ the _i:<.el,.meltt state ere or vector,

12;4 _
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X_rr "" [Zer,, _er,, _/'er,, i'er_, Yerr, _,i'c_,),directly to the binary eight.element vector of

thrasters to fire, T = [7"_7_ Tj T4 2"'_:/_ Tr 78]. Tills even-moze.compl.e_: nonlinear control

problem is not addressed here, but a mue.h-siml_lvr first step is proposed.

A first step tO address the presence of plant.dynamics in the thruster m._tpper is to use

azl alternative error-_'eighting scheme. This.plan does not address the on-off nature of the

thrusters directly, but doe._.incorlmrate the effect of variations in the |nass properties of the

robot. For example, if the momertt of ir.ertia were relatively 8m_tll compared to the mass, it

might be more in'qmrt_nt to match tke desired torque _han the cle._ired tianslational forces.

In thi_ plan. i_stead of mi_fimizing normalized force error, the force error is consldered

to be a disturhance, and the resulting normalized acceleratioit error vector is minimized,

The normalization fa.¢tor chosen isthe acceleration vector resulting at the perimeter of the

base. radius r, chen a single thrc:_ter i_ fired. In this instant'e, the error becomes:

mint J_ L / + ma._s / +\ (l¢./r)] +°a_'_7"_i;,1 {A,1)

where,

J = thruster.fftapping performance cost

T "" binary thruster vahte:_.[ 7"1 '1"2 T3 7"4 Ts Te :/_ 21, ]

i = thruster number-

F_:,_,(T) =: net force err'or _n _:-direction. (I_,,,, - l_.a), resulting from T

k'u,,,[T) =: net force error _.ny.direction, (Fva,, .- F_,_,), resulting from T

r_.,,,(T) =: net torque _rro" abol_t _,,.a_Js, (rv._,, -" re,,,, ), rosul_b_g from T

m(l_s =: robot tot.t] llla_$

1¢. --: robot moment tfflnertia about O nxis

r =: t-obot b_e.r._tditts

Due t+_the dimensions and mass pl,cperties of the r,._ln_tused in th_e ex,2eritnr_tlt.,., t'fi._

ends up being close to the original cost function, and the actual perfo_'tmmc.? i/npr_wolll_'itt

i_ thi_ ra_,., is minimal.

Q
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Appendix B

Accelerometer Specifications

B fwo Systron l)¢,nw..r .13]UA I.i_tear ,qerv_, Ad_*olerometers were used on the robot, as de-

scribed in Secl:idns '2 and ti. "[his App0ndix ('on_ains specificalion._ and dimension,,_ t'_r these

ac_'el_mlnetat's !10].
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